Urban water management strategies based on a total urban water cycle model and energy aspects – Case study for Tel Aviv

2011 ◽  
Vol 8 (2) ◽  
pp. 103-118 ◽  
Author(s):  
Tong Thi Hoang Duong ◽  
Avner Adin ◽  
David Jackman ◽  
Peter van der Steen ◽  
Kala Vairavamoorthy
1999 ◽  
Vol 39 (5) ◽  
pp. 211-218 ◽  
Author(s):  
J. Icke ◽  
R. M. van den Boomen ◽  
R. H. Aalderink

A simple model for the urban water cycle is presented, based on mass balances for water and phosphorus. This model is used for the evaluation of the sustainability rate of the urban water cycle. This type of model is to be used in an early stage of town planning, to compare several possible measures. In general, contributing to achieving a more sustainable urban water management. A sensitivity analysis was performed to rank the management options and additional measures to their contribution to the sustainability rate of the urban water cycle. A module for the calculation of cost was linked to the model, revealing the relation between cost and the sustainability rate for a wide range of scenarios. The results show that an improved separated sewer system and the use of a local ground water source have the biggest impact on the sustainability rate. A slightly positive correlation between investment cost and the sustainability rate was found as well.


2014 ◽  
Vol 17 (2) ◽  
pp. 176-192 ◽  
Author(s):  
Dimitrios Bouziotas ◽  
Evangelos Rozos ◽  
Christos Makropoulos

Urban water management is currently understood as a socio-technical problem, including both technologies and engineering interventions as well as socioeconomic dimensions and contexts vis-à-vis both end users and institutions. In this framework, perhaps the most important driver of urban water demand, at the intersection between engineering, social and economic domains, is urban growth. This paper examines aspects of the interplay between the dynamics of urban growth and the urban water cycle. Specifically, a cellular automata urban growth model is re-engineered to provide growth patterns at the level of detail needed by an urban water cycle model. The resulting toolkit is able to simulate spatial changes in urban areas while simultaneously estimating their water demand impact under different water demand management scenarios, with an emphasis on distributed technologies whose applicability depends on urban form. The method and tools are tested in the case study of Mesogeia, Greece, and conclusions are drawn, regarding both the performance of the urban growth model and the effectiveness of different urban water management practices.


Water ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 682 ◽  
Author(s):  
Hyowon Kim ◽  
Jaewoo Son ◽  
Seockheon Lee ◽  
Stef Koop ◽  
Kees van Leeuwen ◽  
...  

2006 ◽  
Vol 54 (6-7) ◽  
pp. 415-422 ◽  
Author(s):  
R.R. Brown ◽  
L. Sharp ◽  
R.M. Ashley

It is now well accepted that there are significant challenges to realising the widespread and self-sustaining implementation of sustainable urban water management. It is argued that these challenges are entrenched within the broader socio-political framework, yet often unsuccessfully addressed within the more narrow scope of improving technical knowledge and design capacity. This hypothesis is investigated through a comparative analysis of three independent research projects investigating different dimensions of the water cycle, including stormwater management in Australia and sanitary waste management and implementation of innovative technologies in the UK. The analysis reveals significant and common socio-political impediments to improved practice. It was evident that the administrative regime, including implementing professionals and institutions, appears to be largely driven by an implicit expectation that there is a technical solution to solve water management issues. This is in contrast to addressing the issues through broader strategies such as political leadership, institutional reform and social change. It is recognised that this technocratic culture is inadvertently underpinned by the need to demonstrate implementation success within short-term political cycles that conflict with both urban renewal and ecological cycles. Addressing this dilemma demands dedicated socio-technical research programs to enable the much needed shift towards a more sustainable regime.


Author(s):  
S. Chandran ◽  
S. R. Thiruchelve ◽  
M. Dhanasekarapandian

Abstract Economic growth of any nation like India depends on growth of cities. In India 31% of total population exists in urban extent. Smart City mission of India was established with the objective to deliver the basic requirements of the citizens in a sustainable manner. Madurai city located at Peninsular India with 1.4 Million population was taken for this study. The objective is to develop an Integrated Urban Water Management Strategy after analysing all the components of Urban Water Cycle such as rainfall, runoff, groundwater and wastewater. The population forecast for 2021 was done for the Local Planning Area (LPA) of 726.34 km2 and the water demand was calculated as 109 Mm3/year. To meet the demand, runoff from the average rainfall was estimated as 393 Mm3/yr using SCS-CN method. The storage capacity in the water bodies to store the Surface water was estimated as 156 Mm3/yr and groundwater recharge potential was estimated as 22 Mm3/yr. The Integrated Urban Water Management strategy developed, shows that there is a huge potential for rainwater storage at the surface level and subsequent recharge through artificial recharge techniques.


2021 ◽  
Author(s):  
Zeyu Yao ◽  
Sarah Bell

Sustainable, resilient urban water management is fundamental to good environmental and public health. As an interdisciplinary task, it faces enormous challenges from project complexity, network dynamics, and the tacit nature of knowledge being communicated between actors involved in design, decisions and delivery. Among others, some critical and persistent challenges to the implementation of sustainable urban water management include the lack of knowledge and expertise, lack of effective communication and collaboration, and lack of shared understanding and context. Using the Chinese Sponge City programme as a case study, this paper draws on the perspectives of Polanyi and Collins to investigate the extent to which knowledge can be used and exchanged between actors. Using Collins’ conceptualisation of the terrain of tacit knowledge, the study identifies the use of relational, somatic, and collective tacit knowledge in the Sponge City pilot project. Structured interviews with 38 people working on a Sponge City pilot project provided data that was rigorously analysed using qualitative thematic analysis. The paper is original in using theories of tacit knowledge to explain barriers and pathways for information and messages being communicated between actors in urban water management. The methods and results provide the groundwork for analysing the access and mobilisation of tacit knowledge in the Sponge City pilot project, with relevance for other complex, interdisciplinary environmental projects and programmes.


2005 ◽  
Vol 51 (10) ◽  
pp. 21-27 ◽  
Author(s):  
J. Hunt ◽  
M. Anda ◽  
K. Mathew ◽  
G. Ho ◽  
G. Priest

Integrated Urban Water Management (IUWM) seeks to extend Water Sensitive Urban Design to a total water cycle approach that includes reuse of wastewaters. This paper investigates the appropriateness of environmental technologies for application at a cluster scale in IUWM. Many environmental technologies are economically or physically unsuited to use on a municipal or unit scale. Cluster scale is a middle ground that will allow such environmental technologies to achieve full potential. The concept of cluster scale and the application of environmental technologies at this scale are discussed along with some examples of suitable technologies.


Sign in / Sign up

Export Citation Format

Share Document