Evaluation of a long-term operation of a submerged nanofiltration membrane bioreactor (NF MBR) for advanced wastewater treatment

2006 ◽  
Vol 53 (6) ◽  
pp. 131-136 ◽  
Author(s):  
J.-H. Choi ◽  
K. Fukushi ◽  
H.Y. Ng ◽  
K. Yamamoto

Nanofiltration (NF) is considered as one of the most promising separation technologies to obtain a very good-quality permeate in water and wastewater treatment. A submerged NF membrane bioreactor (NF MBR) using polyamide membranes was tested for a long-term operation and the performance of the NF MBR was compared with that of a microfiltration MBR (MF MBR). Total organic carbon (TOC) concentration in the permeate of the NF MBR ranged from 0.5 to 2.0 mg/L, whereas that of the MF MBR showed an average of 5 mg/L. This could be explained by the tightness of the NF membrane. Although the concentration of organic matter in the supernatant of the NF MBR was higher than that in the permeate due to high rejection by the NF membrane, the NF MBR showed excellent treatment efficiency and satisfactory operational stability for a long-term operation.

2005 ◽  
Vol 51 (6-7) ◽  
pp. 305-312 ◽  
Author(s):  
J.-H. Choi ◽  
K. Fukushi ◽  
K. Yamamoto

This study evaluates the performance of nanofiltration membrane bioreactor (NF MBR) systems using cellulose triacetate (CA) and polyamide (PA) membranes. The results indicated that both NF membranes could produce high quality permeate in the submerged NF MBR system. In addition, hollow fiber CA membranes exhibited the capability of higher permeate productivity than PA membranes. However, to obtain high quality permeate for a long-term operation, CA membranes should be maintained using an appropriate method, such as chlorine disinfection, in order to control the membrane biodegradation. The results demonstrated that PA membranes were capable of producing higher quality permeate for a long period than CA membranes. In order to enhance the practicability of PA membranes in submerged NF MBR systems, it is required that the membranes should have the lowest possible intrinsic salt rejection.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 427-434 ◽  
Author(s):  
K. Kimura ◽  
Y. Watanabe

In this study, a novel membrane bioreactor (MBR) in which nitrification and denitrification simultaneously proceed in a single reaction chamber is proposed for advanced municipal wastewater treatment. Anoxic/aerobic environments are alternatively created in the proposed MBR by inserting baffles inside the membrane chamber. The performance of the proposed baffled membrane bioreactor (BMBR) was examined at an existing municipal wastewater treatment facility based on long-term operation. Although the procedure was simple, insertion of the baffles actually created the alternative anoxic/aerobic environments in the chamber at a constant interval and showed a great improvement in the nutrient removal. The insertion did not cause any adverse effect on membrane permeability. In this study, almost complete elimination of NH4+-N was observed while around 8mg/L of NO3−-N was detected in the treated water. The modification proposed in this study can immediately be applied to most existing MBRs and is highly recommended for more efficient wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document