Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment

2011 ◽  
Vol 45 (2) ◽  
pp. 863-871 ◽  
Author(s):  
Chun-Hai Wei ◽  
Xia Huang ◽  
Roger Ben Aim ◽  
Kazuo Yamamoto ◽  
Gary Amy
2008 ◽  
Vol 57 (12) ◽  
pp. 1873-1879 ◽  
Author(s):  
G. Guglielmi ◽  
D. Chiarani ◽  
D. P. Saroj ◽  
G. Andreottola

The paper discusses the experimental optimisation of both chemical and mechanical cleaning procedures for a flat-sheet submerged membrane bioreactor fed with municipal wastewater. Fouling was evaluated by means of the critical flux concept, which was experimentally measured by short-term flux-stepping tests. By keeping constant most important parameters of the biological process (MLSS, sludge age), two different chemical cleaning protocols (2,000 mg L−1 NaOCl and 200 mg L−1 NaOCl) were applied with different frequency and, after approximately 9 months of operation, the criticality threshold was determined under different values of SADm (specific aeration demand per unit of membrane surface area). The weaker and more frequent chemical cleaning regime (200 mg L−1, monthly) proved much more effective than the stronger and less frequent strategy (2,000 mg L−1, once every three months). The improvement of performances was quantified by two TMP-based parameters, the fouling rate and the ΔTMP (difference between TMP values during the increasing and decreasing phase of hysteresis). The best performing configuration was then checked over a longer period by running four long-term trials showing an exponential trend of the sub-critical fouling rate with the imposed flux.


2005 ◽  
Vol 52 (10-11) ◽  
pp. 427-434 ◽  
Author(s):  
K. Kimura ◽  
Y. Watanabe

In this study, a novel membrane bioreactor (MBR) in which nitrification and denitrification simultaneously proceed in a single reaction chamber is proposed for advanced municipal wastewater treatment. Anoxic/aerobic environments are alternatively created in the proposed MBR by inserting baffles inside the membrane chamber. The performance of the proposed baffled membrane bioreactor (BMBR) was examined at an existing municipal wastewater treatment facility based on long-term operation. Although the procedure was simple, insertion of the baffles actually created the alternative anoxic/aerobic environments in the chamber at a constant interval and showed a great improvement in the nutrient removal. The insertion did not cause any adverse effect on membrane permeability. In this study, almost complete elimination of NH4+-N was observed while around 8mg/L of NO3−-N was detected in the treated water. The modification proposed in this study can immediately be applied to most existing MBRs and is highly recommended for more efficient wastewater treatment.


2014 ◽  
Author(s):  
◽  
Mxolisi Norman Cele

Increased public concern over health and the environment, the need to expand existing wastewater treatment plants due to population increase, and increasingly stringent discharge requirements, have created a need for new innovative technologies that can generate high quality effluent at affordable cost for primary and secondary re-use. The membrane biological reactor (MBR) process is one of the innovative technologies that warrant consideration as a treatment alternative where high quality effluent and/or footprint limitations are a prime consideration. MBR processes have been applied for the treatment of industrial effluent for over ten years (Harrhoff, 1990). In this process, ultrafiltration or microfiltration membranes separate the treated water from the mixed liquor, replacing the secondary settling tanks of the conventional activated sludge process. Historically, energy costs associated with pumping the treated water through the membranes have limited widespread application for the treatment of high volumes of municipal wastewater. However, recent advancements and developments in membrane technology have led to reduced process energy costs and induced wider application for municipal wastewater treatment (Stephenson et al., 2000). This report describes a small and pilot scale demonstration study conducted to test a woven fabric microfiltration immersed membrane bioreactor (WFM-IMBR) process for use in domestic wastewater treatment. The study was conducted at Durban Metro Southern Wastewater Treatment Works, Veolia Plant, South Africa. The main objective of this project was to develop and evaluate the performance of an aerobic woven fabric microfiltration immersed membrane bioreactor (WFM-IMBR) for small scale domestic wastewater treatment. The experiments were oriented towards three sub objectives: to develop the membrane pack for immersed membrane bioreactor based on WF microfilters; to evaluate the hydrodynamics of WF membrane pack for bioreactor applications; and to evaluate the long-term performance and stability of WFM-IMBR in domestic waste water treatment. The literature was reviewed on membrane pack design for established commercial IMBR. The data collected from literature was then screened and used to design the WF membrane pack. Critical flux was used as the instrument to measure the WF membrane pack hydrodynamics. Long-term operation of the WFM-IMBR was in two folds: evaluating the performance and long term stability of WFM-IMBR. The membrane pack of 20 flat sheet rectangular modules (0.56 m by 0.355 m) was developed with the gap of 5 mm between the modules. The effects of parameters such as mixed liquor suspended solids or aeration on critical flux were examined. It was observed that the critical flux decreased with the increase of sludge concentration and it could be enhanced by improving the aeration intensity as expected and in agreement with the literature. Hence the operating point for long term subcritical operation was selected to be at a critical flux of 30 LMH and 7.5 L/min/module of aeration. Prior to the long term subcritical flux of WFM-IMBR, the operating point was chosen based on the hydrodynamic study of the WF membrane pack. The pilot scale WFM-IMBR demonstrated over a period of 30 days that it can operate for a prolonged period without a need for cleaning. Under subcritical operation, it was observed that there was no rise in TMP over the entire period of experimentation. Theoretically this was expected but it was never investigated before. Good permeate quality was achieved with 95% COD removal and 100% MLSS removal. The permeate turbidity was found to be less than 1 NTU and it decreased with an increase in time and eventually stabilized over a prolonged time. Woven fibre membranes have demonstrated great potential in wastewater treatment resulting in excellent COD and MLSS removal; low permeate turbidity and long term stability operation. From the literature surveyed, this is the first study which investigated the use of WF membranes in IMBRs. The study found that the small scale WFM-IMBR unit can be employed in fifty equivalence person and generate effluent that is free of suspended solids, having high levels of solid rejection and has acceptable discharge COD for recycle. Future work should be conducted on energy reduction strategies that can be implemented in WFM-IMBR for wastewater treatment since high energy requirements have been reported by commercial IMBRs.


2004 ◽  
Vol 4 (1) ◽  
pp. 143-149 ◽  
Author(s):  
T. Itonaga ◽  
Y. Watanabe

This paper deals with the performance of a hybrid membrane bioreactor (MBR) combined with pre-coagulation/sedimentation. Primary clarifier effluent in a municipal wastewater treatment plant was fed into the hybrid MBR to investigate its performance during long-term operation. Pre-coagulation/sedimentation process efficiently removed the suspended solids including organic matter and phosphorus. Comparison of the hybrid MBR and conventional MBR was made in terms of the permeate quality and membrane fouling. As the organic loading to the MBR was significantly reduced by the pre-coagulation/sedimentation, production and accumulation of extracellular polymeric substances (EPS) may be limited. Therefore, the mixed liquor viscosity in the hybrid MBR was much lower than that in the conventional MBR. These effect caused by pre-coagulation/sedimentation brought a remarkable improvement in both permeate quality and membrane permeability.


Desalination ◽  
2006 ◽  
Vol 199 (1-3) ◽  
pp. 325-327 ◽  
Author(s):  
Alfieri Pollice ◽  
Daniela Saturno ◽  
Cristina Giordano ◽  
Giuseppe Laera

Sign in / Sign up

Export Citation Format

Share Document