Cadmium biosorption by non-living aquatic macrophytes Egeria densa

2009 ◽  
Vol 60 (2) ◽  
pp. 293-300 ◽  
Author(s):  
A. N. Módenes ◽  
J. M. T. de Abreu Pietrobelli ◽  
F. R. Espinoza-Quiñones

In this work the removal potential on Cd2+  by the non-living Egeria densa biomass has been studied. The influence of the metal solution pH, the plant drying and the metal solution temperature, and biosorbent grain size was previously studied in batch systems. The cadmium adsorption rate has increased when the pH was increasing, but at pH 5, the cadmium precipitation has begun to occur, avoiding such high pH values in other tests. The cadmium removal was around 70% at 30°C biomass dried and solution temperatures, assuming as the best temperature conditions. No significant influence was observed in cadmium removal due to the grain size effect. The biosorption kinetic data were well fitted by a pseudo-second order model. The equilibrium time in experiments was around 45 min with a 70% Cd removal. The equilibrium data at pH 5 were described rather better by the Langmuir isotherm than the Freundlich one, with an adsorption rate and maximum metal content values of 0.40 L  g−1 and 1.28 meq  g−1, respectively, for Langmuir model. The kinetic parameter values are near to other biosorbents, indicating that the macrophytes E. densa could be used as biosorbent material in industrial effluent treatment system.

1992 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Larbi Tebai ◽  
Ioannis Hadjivassilis

Soft drinks industry wastewater from various production lines is discharged into the Industrial Effluent Treatment Plant. The traditional coagulation/flocculation method as first step, followed by biological treatment as second step, has been adopted for treating the soft drinks industry wastewaters. The performance of the plant has been evaluated. It has been found that the effluent characteristics are in most cases in correspondence with the requested standards for discharging the effluent into the Nicosia central sewerage system.


2019 ◽  
Vol 8 (1) ◽  
pp. 77 ◽  
Author(s):  
E. F. Mohamed ◽  
G. Awad ◽  
C. Andriantsiferana ◽  
H. Delmas

In recent years, interest has been focused on the removal of phenols from contaminated by using a variety of purification techniques. Adsorption of bio-industrial effluent on commercial activated carbon S23 was investigated at ambient conditions. In this wok, phenol and p-hydroxyl benzoic acid (PHBA) was studied as an example of the organic compounds present in the industrial effluent. The effect of temperature, pH, and the presence of inorganic salt NaCl on the pollutants adsorption were studied to give further comprehension of the optimal conditions of the organic compounds adsorption onto activated carbon. It was noted that the increase in temperature resulted in a decrease in phenols adsorption capacity by S23. Lower phenol adsorption was also observed at the solution pH 2 and 10, whereas, favourable adsorption was reached at neutral solution pH, and the coexisting inorganic salt NaCl exerts slightly positive effect on the adsorption process. The isotherms obtained at pH 2.2 and 3.5 (non-buffered solution) are very similar and showed a higher adsorption capacity compared with that obtained at pH 7 and 10 for PHBA which is more adsorbable than phenol. The kinetic of the adsorption processes can be better represented by the pseudo-second order. The results showed also that the total organic carbon (TOC) of the industrial effluent reduced for about 20 %. Freundlich, Langmuir and Jovanovic adsorption models were used for mathematical description of adsorption equilibrium of phenols. The results showed that the experimental data fitted very well to the Freundlich and Jovanovic models.


2018 ◽  
Vol 104 ◽  
pp. 111-120 ◽  
Author(s):  
S. Vishali ◽  
Picasso Sengupta ◽  
Rajdeep Mukherjee ◽  
Nihal Rao

Sign in / Sign up

Export Citation Format

Share Document