Proposing a method for online permeability monitoring in membrane bioreactors

2009 ◽  
Vol 60 (2) ◽  
pp. 497-506 ◽  
Author(s):  
A. Joss ◽  
M. Böhler ◽  
D. Wedi ◽  
H. Siegrist

Reliable and efficient operation of membrane bioreactors (MBR) for centralized municipal wastewater treatment strongly depends on a good monitoring of the membrane permeability, a value often used to quantify the transmissibility (i.e. the inverse of the flow resistance) of the membrane. By directly or indirectly evaluating this parameter the operator normally plans on the necessity and effectivity of maintenance activities. To allow the operator monitoring the membrane performance closely, the present paper proposes a method for online permeability based on the measurements of permeate flow, transmembrane pressure and water temperature. The theoretical background of the method is discussed and a data set of 250 days of continuous pilot operation of a municipal MBR equipped with three different standard membrane modules is used for testing. The method is numerically simple enough to allow being implemented on any programmable logical controller.

2015 ◽  
Vol 4 (0) ◽  
pp. 9781780402925-9781780402925
Author(s):  
H. van der Roest ◽  
D. Lawrence ◽  
A. van Bentem

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 553
Author(s):  
Dimitra C. Banti ◽  
Manassis Mitrakas ◽  
Petros Samaras

A promising solution for membrane fouling reduction in membrane bioreactors (MBRs) could be the adjustment of operating parameters of the MBR, such as hydraulic retention time (HRT), food/microorganisms (F/M) loading and dissolved oxygen (DO) concentration, aiming to modify the sludge morphology to the direction of improvement of the membrane filtration. In this work, these parameters were investigated in a step-aerating pilot MBR that treated municipal wastewater, in order to control the filamentous population. When F/M loading in the first aeration tank (AT1) was ≤0.65 ± 0.2 g COD/g MLSS/d at 20 ± 3 °C, DO = 2.5 ± 0.1 mg/L and HRT = 1.6 h, the filamentous bacteria were controlled effectively at a moderate filament index of 1.5–3. The moderate population of filamentous bacteria improved the membrane performance, leading to low transmembrane pressure (TMP) at values ≤2 kPa for a great period, while at the control MBR the TMP gradually increased reaching 14 kPa. Soluble microbial products (SMP), were also maintained at low concentrations, contributing additionally to the reduction of ΤΜP. Finally, the step-aerating MBR process and the selected imposed operating conditions of HRT, F/M and DO improved the MBR performance in terms of fouling control, facilitating its future wider application.


2005 ◽  
Vol 51 (6-7) ◽  
pp. 1-8 ◽  
Author(s):  
B. Lesjean ◽  
S. Rosenberger ◽  
C. Laabs ◽  
M. Jekel ◽  
R. Gnirss ◽  
...  

Two similar membrane bioreactors of 2 m3 each were operated in parallel over two years under the same operational conditions, fed with the same municipal wastewater. The only process and operational difference between both pilot plants was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite parallel operation, the two MBRs exhibited different fouling rates and decreases in permeability. These differences could not be accounted for by MLSS concentrations, loading rates, or filtration flux. In a one-year investigation, soluble and colloidal organic material in the activated sludge of both MBR was regularly analysed by spectrophotometric and Size Exclusion Chromatography (SEC) methods. The larger organic molecules present in the sludge water phase (i.e. polysaccharides, proteins and organic colloids) originating from microbial activity (extracellular polymeric substances) were found to impact on the fouling and to explain the difference in membrane performance between the two MBR units. In both pilot plants, a linear relationship could be clearly demonstrated between the fouling rate of the membrane and the concentration of polysaccharides in the sludge water phase during a 5 month operational period at an SRT of 8 days.


2012 ◽  
Vol 122 ◽  
pp. 2-10 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
Adrienne L. Menniti ◽  
Zeynep K. Erdal ◽  
Timothy A. Constantine ◽  
Bruce R. Johnson ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 231
Author(s):  
Yi Ding ◽  
Zhansheng Guo ◽  
Zhenlin Liang ◽  
Xuguang Hou ◽  
Zhipeng Li ◽  
...  

In this study, the characteristics of activated sludge flocs were investigated and their effects on the evolution of membrane fouling were considered in the anaerobic membrane bioreactors (AnMBR), which were operated at 25 and 35 °C for municipal wastewater treatment. It was found that the membrane fouling rate of the AnMBR at 25 °C was more severe than that at 35 °C. The membrane fouling trends were not consistent with the change in the concentration of soluble microbial product (SMP). The larger amount of SMP in the AnMBR at 35 °C did not induce more severe membrane fouling than that in the AnMBR at 25 °C. However, the polysaccharide and protein concentration of extracellular polymeric substance (EPS) was higher in the AnMBR at 25 °C in comparison with that in the AnMBR at 35 °C, and the protein/polysaccharide ratio of the EPS in the AnMBR at 25 °C was higher in contrast to that in the AnMBR at 35 °C. Meanwhile, the fouling tendencies measured for the AnMBRs could be related to the characteristics of loosely bound EPS and tightly bound EPS. The analysis of the activated sludge flocs characteristics indicated that a smaller sludge particle size and more fine flocs were observed at the AnMBR with 25 °C. Therefore, the membrane fouling potential in the AnMBR could be explained by the characteristics of activated sludge flocs.


2015 ◽  
Vol 72 (10) ◽  
pp. 1754-1761 ◽  
Author(s):  
A. Fenu ◽  
B. M. R. Donckels ◽  
T. Beffa ◽  
C. Bemfohr ◽  
M. Weemaes

Microbacterium sp. strain BR1 is a bacterial strain that recently received attention for its capability to mineralize sulfamethoxazole (SMX) and other sulfonamides. In this study, the survival of Microbacterium sp. in municipal sludge waters was tested in batch experiments to explore optimal process conditions. Inoculation of Microbacterium sp. was subsequently performed in a pilot membrane bioreactor (MBR) operated in two configurations: treating full-scale MBR permeate (post-treatment) and treating raw municipal wastewater. SMX removal by Microbacterium sp. could not be proved in any of the configurations, except for SMX concentrations far higher than the ones normally found in municipal wastewater. By use of molecular tools (fluorescence in situ hybridization analysis) a low capability to survive in activated sludge systems was assessed. After inoculation, Microbacterium sp. was reduced to a small fraction of the viable biomass. The observed growth rate appeared to be many times lower than the one of typical activated sludge micro-organisms. Possibilities of application in full-scale municipal wastewater treatment are scarce.


Sign in / Sign up

Export Citation Format

Share Document