Microbial population dynamics of granular aerobic sequencing batch reactors during start-up and steady state periods

2010 ◽  
Vol 62 (6) ◽  
pp. 1281-1287 ◽  
Author(s):  
Y. Q. Liu ◽  
Y. H. Kong ◽  
R. Zhang ◽  
X. Zhang ◽  
F. S. Wong ◽  
...  

This study investigates microbial population dynamics in granular sequencing batch reactors (GSBR). The experimental results of DGGE fingerprint of sludge demonstrated that the microbial community structure of sludge shifted significantly during granulation period and nutrient removal improvement period. After reactor performance and physical characteristics of sludge reached steady state, microbial population of sludge became relatively stable. The high similarity of microbial community structure between co-existed flocculated sludge and granular sludge in GSBR at different operation phases indicated that similar microbial consortium could exist in compact aggregated form or in amorphous flocculated form. Therefore, strong selection pressure was still required to wash out flocs to maintain the stability of reactor operation. In addition, it was found that substrate type had considerable impact on microbial species selection and enrichment in granular sludge. The clone library of granular sludge showed that microbial species in divisions of α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria and Bacteroidetes existed within acetate-fed granule communities and Thauera spp. from β-Proteobacteria accounted for 49% of the total clones in the whole clone library. It is thus speculated that Thauera spp. are important for the formation of acetate-fed granules under the conditions used in this study, maintaining the integrity of granules or substrate degradation.

2010 ◽  
Vol 25 (3) ◽  
pp. 164-170 ◽  
Author(s):  
Shinya Matsumoto ◽  
Daisuke Ishikawa ◽  
Goro Saeki ◽  
Yoshiteru Aoi ◽  
Satoshi Tsuneda

2016 ◽  
Vol 74 (2) ◽  
pp. 500-507 ◽  
Author(s):  
Nguyen Thi Thanh ◽  
Takahiro Watari ◽  
Tran Phuong Thao ◽  
Masashi Hatamoto ◽  
Daisuke Tanikawa ◽  
...  

In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m−3·day−1, it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L−1 and the OLR range was increased up to 5.32 kg-COD·m−3·day−1, the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.


Sign in / Sign up

Export Citation Format

Share Document