Microbial diversity in biofilms on water distribution pipes of different materials

2010 ◽  
Vol 61 (1) ◽  
pp. 163-171 ◽  
Author(s):  
J. Yu ◽  
D. Kim ◽  
T. Lee

The effects of pipe materials on biofilm formation potential (BFP) and microbial communities in biofilms were analyzed. Pipe coupons made of six different materials (CU, copper; CP, chlorinated poly vinyl chloride; PB, polybutylene; PE, polyethylene; SS, stainless steel; ST, steel coated with zinc) were incubated in drinking water, mixed water (inoculated with 10% (v/v) of river water) and drinking water inoculated with Escherichia coli JM109 (E. coli), respectively. The highest BFPs were observed from steel pipes, SS and ST, while CU showed the lowest BFP values. Of the plastic materials, the BFP of CP in drinking water (96 pg ATP/cm2) and mixed water (183 pg ATP/cm2) were comparable to those of CU, but the other plastic materials, PB and PE, displayed relatively high BFP. The Number of E. coli in the drinking water inoculated with cultures of E. coli strain showed similar trends with BFP values of the pipe coupons incubated in drinking water and mixed water. Molecular analysis of microbial communities indicated the presence of α- and β-proteobacteria, actinobacteria and bacteroidetes in biofilm on the pipe materials. However, the DGGE profile of bacterial 16S rDNA fragments showed significant differences among different materials, suggesting that the pipe materials affect not only BFP but also microbial diversity. Some plastic materials, such as CP, would be suitable for plumbing, particularly for drinking water distribution pipes, due to its low BFP and little microbial diversity in biofilm.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 224
Author(s):  
Zhiling Zhao ◽  
Yongji Zhang ◽  
Lu Wang ◽  
Wenhang Shi

Microorganism rebreeding and biofilm shedding enter the water body in the process of a drinking water distribution system (DWDS), which poses a threat to public health. Particles in water can gather pollutants as well as providing favorable growth conditions for bacteria. To date, there are a few studies which focus on the relationship between particles and biofilm formation. Therefore, the microbial diversity of biofilms in the different pipe materials and the effect on particle concentration on biofilm formation were investigated in this study. Experiments were carried out under a simulative DWDS (including iron (DI) and polyvinyl chloride (PVC) pipe). The results showed that the microbial diversity in biofilms followed this order: DI pipe > PVC pipe > DI pipe (upper). Moreover, the microbial biomass of biofilm and the fluorescence intensity of extracellular polymeric substances (EPS, produced by microorganisms) were the largest in the absence of particles. The amount of biofilm bacterial and the fluorescence intensity of EPS both showed first an increasing and then decreasing trend with particle concentration increasing. When particle concentration was relatively low, the absorption of particles and bacteria played a major role, however, with the increasing particle concentration, more stable particle–particle were formed and thus, EPS was easily extracted, resulting in the increase of fluorescence intensity of EPS.


RSC Advances ◽  
2020 ◽  
Vol 10 (52) ◽  
pp. 31295-31304 ◽  
Author(s):  
Zebing Zhu ◽  
Lili Shan ◽  
Fengping Hu ◽  
Zehua Li ◽  
Dan Zhong ◽  
...  

Biofilms are the main carrier of microbial communities throughout drinking water distribution systems (DWDSs), and strongly affect the safety of drinking water.


2007 ◽  
Vol 5 (2) ◽  
pp. 323-327 ◽  
Author(s):  
Renato H. Orsi ◽  
Nancy C. Stoppe ◽  
Maria Inês Z. Sato ◽  
Laura M. M. Ottoboni

The presence of Escherichia coli in drinking water is an indication of fecal contamination and can represent a risk of waterborne diseases. Forty-nine E.coli strains isolated from different sources of drinking water (distribution system, well, spring and mineral water) were placed into the phylogenetic groups A (15 strains), B1 (19 strains), B2 (2 strains) and D (13 strains). Approximately 30% of the strains analyzed belonged to groups B2 and D, which usually include potentially extraintestinal pathogenic strains. Moreover, the assignment of the strains to different phylogenetic groups indicates that different contamination events occurred in these waters. These results were compared with the distribution of E. coli strains isolated from two rivers and two dams into the phylogenetic groups. A significant difference was observed when the distribution of drinking water strains into the phylogenetic groups was compared to the results obtained from the Guarapiranga Dam and the Jaguari and Sorocaba Rivers. The results obtained in this work suggest that PCR-based methods can be used for a rapid assessment of potentially pathogenic E. coli strains in water samples.


1998 ◽  
Vol 64 (1) ◽  
pp. 197-202 ◽  
Author(s):  
I. Sibille ◽  
T. Sime-Ngando ◽  
L. Mathieu ◽  
J. C. Block

ABSTRACT The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia colito the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations.


2008 ◽  
Vol 6 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Tarja Pitkänen ◽  
Ilkka T. Miettinen ◽  
Ulla-Maija Nakari ◽  
Johanna Takkinen ◽  
Anja Siitonen ◽  
...  

After heavy rains Campylobacter jejuni together with high counts of Escherichia coli, other coliforms and intestinal enterococci were detected from drinking water of a municipal distribution system in eastern Finland in August 2004. Three patients with a positive C. jejuni finding, who had drunk the contaminated water, were identified and interviewed. The pulsed-field gel electrophoresis (PFGE) genotypes from the patient samples were identical to some of the genotypes isolated from the water of the suspected contamination source. In addition, repetitive DNA element analysis (rep-PCR) revealed identical patterns of E. coli and other coliform isolates along the distribution line. Further on-site technical investigations revealed that one of the two rainwater gutters on the roof of the water storage tower had been in an incorrect position and rainwater had flushed a large amount of faecal material from wild birds into the drinking water. The findings required close co-operation between civil authorities, and application of cultivation and genotyping techniques strongly suggested that the municipal drinking water was the source of the infections. The faecal contamination associated with failures in cleaning and technical management stress the importance of instructions for waterworks personnel to perform maintenance work properly.


2012 ◽  
Vol 78 (22) ◽  
pp. 7856-7865 ◽  
Author(s):  
Chiachi Hwang ◽  
Fangqiong Ling ◽  
Gary L. Andersen ◽  
Mark W. LeChevallier ◽  
Wen-Tso Liu

ABSTRACTWater utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (<21.2 h) had no apparent effects on the microbial compositions of samples from most time points. Microbial community analysis revealed that among major core populations,Cyanobacteria,Methylobacteriaceae,Sphingomonadaceae, andXanthomonadaceaewere more abundant in chlorinated water, andMethylophilaceae,Methylococcaceae, andPseudomonadaceaewere more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (<0.1% of total pyrosequences), which were likely present in source water and survived through the treatment process. Transient microbial populations includingFlavobacteriaceaeandClostridiaceaewere also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.


Sign in / Sign up

Export Citation Format

Share Document