Evaluation of chitosan as a natural coagulant for drinking water treatment

2010 ◽  
Vol 61 (8) ◽  
pp. 2119-2128 ◽  
Author(s):  
R. Fabris ◽  
C. W. K. Chow ◽  
M. Drikas

Chitosan, a natural biopolymer, was evaluated for its ability to be used as a coagulant to treat water for potable use both in isolation and in combination with other water treatment technologies, specifically ion-exchange and activated carbon. Chitosan was found to be very effective for particle removal at doses far below those required for equivalent turbidity removal by inorganic coagulants. However in the water sources tested, chitosan was not particularly efficient for dissolved organic carbon (DOC) removal when applied as the sole treatment step. When applied as the final clarification stage of a multi-step treatment process, chitosan exhibited limited turbidity reduction due to specific flocculation requirements. This combination of treatment technologies was also unable to further reduce secondary water quality parameters, such as disinfectant demand and trihalomethane (THM) formation.

2002 ◽  
Vol 2 (1) ◽  
pp. 241-247
Author(s):  
K. Bornmann ◽  
B. Wricke ◽  
D. Habel

Most surface water treatment plants use floc-filtration as the most important treatment step in drinking water production. This paper presents a new technological development which allows floc-filtration to be carried out in pressure filters. Experiments in pilot and full scale show its high efficiency. The technological development allows us to treat algal-rich and high turbid matter containing raw water efficiently at high filtration rates. Floc formation can be realised by means of a special reaction tank in front of the filter inlet. Efficient removal of particles and turbidity is achieved if filtration with filter inlet flow controller is used.


2001 ◽  
Vol 28 (S1) ◽  
pp. 26-35 ◽  
Author(s):  
C W Baxter ◽  
Q Zhang ◽  
S J Stanley ◽  
R Shariff ◽  
R -RT Tupas ◽  
...  

To improve drinking water quality while reducing operating costs, many drinking water utilities are investing in advanced process control and automation technologies. The use of artificial intelligence technologies, specifically artificial neural networks, is increasing in the drinking water treatment industry as they allow for the development of robust nonlinear models of complex unit processes. This paper highlights the utility of artificial neural networks in water quality modelling as well as drinking water treatment process modelling and control through the presentation of several case studies at two large-scale water treatment plants in Edmonton, Alberta.Key words: artificial neural networks, water treatment process control, water treatment modelling.


2012 ◽  
Vol 46 (12) ◽  
pp. 3934-3942 ◽  
Author(s):  
Lionel Ho ◽  
Kalan Braun ◽  
Rolando Fabris ◽  
Daniel Hoefel ◽  
Jim Morran ◽  
...  

2010 ◽  
Vol 113-116 ◽  
pp. 2049-2052
Author(s):  
Jin Long Zuo

Nowadays drinking water resource has been polluted, while the conventional treatment process cannot effectively remove polluted matters. In order to tackle this problem, the granular activated carbon (GAC) and ultrafiltration membrane (UF) were introduced into drinking water treatment process. The results revealed that when treat the micro-polluted water the effluent water quality of turbidity, permanganate index and color can reach 0.1NTU, 1.3mg/L-2.3mg/L and 5 degree respectively with GAC-UF process. And the total removal efficiency of turbidity, permanganate index and color can reach 98%-99%, 70%~75% and 60% respectively. The GAC can effectively remove organic matters, while the UF membrane can effectively remove suspended solids, colloids. The GAC-UF combined process can get a good water quality when treat the micro-polluted water.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 57 ◽  
Author(s):  
Abderrezzaq Benalia ◽  
Kerroum Derbal ◽  
Antonio Panico ◽  
Francesco Pirozzi

In this study, the use of acorn leaves as a natural coagulant to reduce raw water turbidity and globally improve drinking water quality was investigated. The raw water was collected from a drinking water treatment plant located in Mila (Algeria) with an initial turbidity of 13.0 ± 0.1 NTU. To obtain acorn leaf powder as a coagulant, the acorn leaves were previously cleaned, washed with tap water, dried, ground and then finely sieved. To improve the coagulant activity and, consequently, the turbidity removal efficiency, the fine powder was also preliminarily treated with different solvents, as follows, in order to extract the coagulant agent: (i) distilled water; (ii) solutions of NaCl (0.25; 0.5 and 1 M); (iii) solutions of NaOH (0.025; 0.05 and 0.1 M); and (iv) solutions of HCl (0.025; 0.05 and 0.1 M). Standard Jar Test assays were conducted to evaluate the performance of the coagulant in the different considered operational conditions. Results of the study indicated that at low turbidity (e.g., 13.0 ± 0.1 NTU), the raw acorn leaf powder and those treated with distilled water (DW) were able to decrease the turbidity to 3.69 ± 0.06 and 1.97 ± 0.03 NTU, respectively. The use of sodium chloride solution (AC-NaCl) at 0.5 M resulted in a high turbidity removal efficiency (91.07%) compared to solutions with different concentrations (0.25 and 1 M). Concerning solutions of sodium hydroxide (AC-NaOH) and hydrogen chloride (AC-HCl), the lowest final turbidities of 1.83 ± 0.13 and 0.92 ± 0.02 NTU were obtained when the concentrations of the solutions were set at 0.05 and 0.1 M, respectively. Finally, in this study, other water quality parameters, such as total alkalinity hardness, pH, electrical conductivity and organic matters content, were measured to assess the coagulant performance on drinking water treatment.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2024
Author(s):  
Abderrezzaq Benalia ◽  
Kerroum Derbal ◽  
Amel Khalfaoui ◽  
Raouf Bouchareb ◽  
Antonio Panico ◽  
...  

The coagulation–flocculation–sedimentation process is widely used for removal of suspended solids and water turbidity reduction. The most common coagulants used to conduct this process are aluminum sulfate and ferric sulfate. In this paper, the use of Aloe vera as a natural-based coagulant for drinking water treatment was tested. The bio-coagulant was used in two different forms: powder as well as liquid; the latter was extracted with distilled water used as a solvent. The obtained results showed that the use of the natural coagulant (Aloe vera) in both powder (AV-Powder) and liquid (AV-H2O) forms reduced the water turbidity at natural pH by 28.23% and 87.84%, respectively. Moreover, it was found that the use of the two previous forms of bio-coagulant for drinking water treatment had no significant influence on the following three parameters: pH, alkalinity, and hardness. The study of the effect of pH on the process performance using Aloe vera as a bio-coagulant demonstrated that the maximum turbidity removal efficiency accounted for 53.53% and 88.23% using AV-Powder and AV-H2O, respectively, at optimal pH 6.


2010 ◽  
Vol 10 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

The performance of a drinking-water treatment plant is determined by the control of the plant. To design the appropriate control system, a control-design methodology of five design steps is proposed, which takes the treatment process characteristics into account. For each design step, the necessary actions are defined. Using the methodology for the pellet-softening treatment step, a new control scheme for the pellet-softening treatment step has been designed and implemented in the full-scale plant. The implementation resulted in a chemical usage reduction of 15% and reduction in the maintenance effort for this treatment step. Corrective actions of operators are no longer necessary.


Sign in / Sign up

Export Citation Format

Share Document