scholarly journals Use of Acorn Leaves as a Natural Coagulant in a Drinking Water Treatment Plant

Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 57 ◽  
Author(s):  
Abderrezzaq Benalia ◽  
Kerroum Derbal ◽  
Antonio Panico ◽  
Francesco Pirozzi

In this study, the use of acorn leaves as a natural coagulant to reduce raw water turbidity and globally improve drinking water quality was investigated. The raw water was collected from a drinking water treatment plant located in Mila (Algeria) with an initial turbidity of 13.0 ± 0.1 NTU. To obtain acorn leaf powder as a coagulant, the acorn leaves were previously cleaned, washed with tap water, dried, ground and then finely sieved. To improve the coagulant activity and, consequently, the turbidity removal efficiency, the fine powder was also preliminarily treated with different solvents, as follows, in order to extract the coagulant agent: (i) distilled water; (ii) solutions of NaCl (0.25; 0.5 and 1 M); (iii) solutions of NaOH (0.025; 0.05 and 0.1 M); and (iv) solutions of HCl (0.025; 0.05 and 0.1 M). Standard Jar Test assays were conducted to evaluate the performance of the coagulant in the different considered operational conditions. Results of the study indicated that at low turbidity (e.g., 13.0 ± 0.1 NTU), the raw acorn leaf powder and those treated with distilled water (DW) were able to decrease the turbidity to 3.69 ± 0.06 and 1.97 ± 0.03 NTU, respectively. The use of sodium chloride solution (AC-NaCl) at 0.5 M resulted in a high turbidity removal efficiency (91.07%) compared to solutions with different concentrations (0.25 and 1 M). Concerning solutions of sodium hydroxide (AC-NaOH) and hydrogen chloride (AC-HCl), the lowest final turbidities of 1.83 ± 0.13 and 0.92 ± 0.02 NTU were obtained when the concentrations of the solutions were set at 0.05 and 0.1 M, respectively. Finally, in this study, other water quality parameters, such as total alkalinity hardness, pH, electrical conductivity and organic matters content, were measured to assess the coagulant performance on drinking water treatment.

Author(s):  
Mohamed Deyab ◽  
Magda El-Adl ◽  
Fatma Ward ◽  
Eman Omar

Abstract This work aims to study the seasonal fluctuation in physicochemical characteristics, trophic status, and some pollutants influencing phytoplankton diversity, and water quality at a compact Kafr El-Shinawy drinking-water treatment plant, Damietta – Egypt seasonally during 2018. Phytoplankton distribution was affected by the trophic status of water, level of pollutants, and physicochemical treatment processes of water. The predominance of phytoplankton species, especially Aphanizomenon flos aquae (Cyanophyta), Gomphosphaeria lacustris (Cyanophyta), Microcystis aeruginosa (Cyanophyta), Nostoc punctiforme (Cyanophyta), Oscillatoria limnetica (Cyanophyta), Pediastrum simplex (Chlorophyta), and Melosira granulata (Bacillariophyta) in treated water was much less than that in raw water. Trihalomethanes (THMs) levels in treated waters were higher than in raw water, while lower concentrations of heavy metals were recorded in treated water. Intracellular levels of microcystins were lower, whereas the extracellular levels were higher in treated water than raw water, and the former recorded the highest level in raw water during summer. Hence, the levels of dissolved microcystins and THMs in treated water were higher especially during summer, the season of luxurious growth of Microcystis species. Trophic state index (TSI) was relatively high in raw water compared with treated water due to high concentrations of nutrients (total-P, total-N, nitrite, nitrate, and ammonia) in raw water.


2019 ◽  
Vol 19 (6) ◽  
pp. 1579-1586 ◽  
Author(s):  
Xiang-Ren Zhou ◽  
Yi-Li Lin ◽  
Tian-Yang Zhang ◽  
Bin Xu ◽  
Wen-Hai Chu ◽  
...  

Abstract The objective of this research was to study the occurrence and seasonal variations of disinfection by-products (DBPs), including traditional carbonaceous and emerging nitrogenous DBPs, in a full-scale drinking water treatment plant (DWTP) for nearly 2 years. The removal efficiencies of each DBP through the treatment processes were also investigated. This DWTP takes raw water from the Yangtze River in East China. The quality of the raw water used in this DWTP varied with different seasons. The results suggested that DBP concentrations of the finished water were higher in spring (82.33 ± 15.12 μg/L) and summer (117.29 ± 9.94 μg/L) with higher dissolved organic carbon (DOC) levels, but lower in autumn (41.10 ± 5.82 μg/L) and winter (78.47 ± 2.74 μg/L) with lower DOC levels. Due to the increase of bromide concentration in spring and winter, more toxic brominated DBPs increased obviously and took up a greater proportion. In this DWTP, DBP concentrations increased dramatically after pre-chlorination, especially in summer. It is noteworthy that the removal of DBPs during the subsequent treatment was more obvious in spring than in the other three seasons because the pH value is more beneficial to coagulation in spring.


2016 ◽  
Vol 17 (2) ◽  
pp. 597-605
Author(s):  
Zhiquan Liu ◽  
Yongpeng Xu ◽  
Xuewei Yang ◽  
Rui Huang ◽  
Qihao Zhou ◽  
...  

The overall purpose was to assess the feasibilities of recycling filter backwash water (FBWW) and combined filter backwash water (CFBWW) in a drinking water treatment plant in south China. The variations of regular water-quality indexes, metal indexes (Al, Mn and Cd), polyacrylamide and disinfection by-product indexes (trihalomethanes and their formation potentials) along with the treatment and the recycling processes were monitored. Results showed the recycling procedure caused increases of turbidity, total solids, ammonia nitrogen (NH3-N), permanganate index (CODMn), and dissolved organic carbon, Al, Mn and Cd concentrations in a mixture of raw water and FBWW or CFBWW compared to those in raw water. However, the recycling procedure had negligible impacts on the qualities of settled water and filtered water because most of the contaminants could be effectively removed by the conventional water treatment process. Although recycling did cause slight increases of NH3-N and CODMn levels in settled water and filtered water, the quality of finished water always conformed to Chinese standards for drinking water quality according to the surveyed indexes in the present study. Thus, it is appropriate to recycle waste streams in water-stressed areas if the source water is well managed and the water treatment processes are carefully conducted.


2017 ◽  
Vol 18 (1) ◽  
pp. 279-287 ◽  
Author(s):  
E. Bertone ◽  
K. O'Halloran ◽  
M. Bartkow ◽  
K. Mann

Abstract The Mudgeeraba drinking water treatment plant, in Southeast Queensland, Australia, can withdraw raw water from two different reservoirs: the smaller Little Nerang dam (LND) by gravity, and the larger Advancetown Lake, through the use of pumps. Selecting the optimal intake is based on water quality and operators' experience; however, there is potential to optimise this process. In this study, a comprehensive hybrid (data-driven, chemical, and mathematical) intake optimisation model was developed, which firstly predicts the chemicals dosages, and then the total (chemicals and pumping) costs based on the water quality at different depths of the two reservoirs, thus identifying the cheapest option. A second data-driven, probabilistic model then forecasts the volume of the smaller LND 6 weeks ahead in order to minimise the depletion and spill risks. This is important in case the first model identifies this reservoir as the optimal intake solution, but this could lead in the long term to depletion and full reliance on the electricity-dependent Advancetown Lake. Both models were validated and proved to be accurate, and with the potential for substantial monetary savings for the water utility.


2010 ◽  
pp. 69-73
Author(s):  
Franclin S. Foping

Drinking contaminated water can be harmful to our health. According to the World Health Organization, about 1.8 million people die every year across the world from water-borne diseases mainly caused by polluted drinking water. Furthermore, the cryptosporidium outbreak that happened in Galway in 2007 indicates the urgency to provide appropriate solutions in order to counteract this ominous situation in the country. Water treatment plants (WTP) are basic components of modern water supply and distribution systems. These are engineering systems that purify raw water to specific safety levels. The raw water passes through a series of treatment phases wherein it is processed and purified according to existing safety protocols regulating drinking water. After undergoing a purification step, the drinking water is distributed to the consumers through a network of pipes, pumps and reservoirs. The research presented in this report is focused on the safety of these critical infrastructures. In particular, the ...


Sign in / Sign up

Export Citation Format

Share Document