Preparation of three-bore hollow fiber charged nanofiltration membrane for separation of organics and salts

2012 ◽  
Vol 65 (1) ◽  
pp. 171-176 ◽  
Author(s):  
Jianmian Deng ◽  
Yatao Zhang ◽  
Jindun Liu ◽  
Haoqin Zhang

Three-bore hollow fiber charged nanofiltration (NF) membrane was prepared by interfacial polymerization (IP). The results showed that the flux and rejection of NF membrane prepared in this study increased with the increasing in the operating pressure. The water flux decreased and rejection for obvious dyes increased as the solute concentration increased. The separation factor for mixture of Xylenol orange/NaCl decreased when NaCl concentration in solution increased and could reach to as high as 18. In addition, three-bore hollow fiber charged nanofiltration membrane prepared in this study has excellent stability for strong acid (pH = 3), strong alkali (pH = 11) and high temperature solution (80 °C).

2010 ◽  
Vol 150-151 ◽  
pp. 1315-1320 ◽  
Author(s):  
Jian Mian Deng ◽  
Jin Dun Liu ◽  
Hao Qin Zhang ◽  
Ya Tao Zhang ◽  
Dong Cheng

Charged mosaic membrane (CMM) has high water flux, low salt retention and high organic rejection. The tri-channel hollow fiber charged-mosaic membrane (CMM) was prepared by interfacial polymerization (IP). The tri-channel polysulfone (PSF) hollow fiber ultrafiltration(UF) membrane was used as the support membrane. Polyethylenimine (PEI), 2, 5-diamino-benzenesulfonic acid (DIA) and basic fuchsin (BF) were used as aqueous phase monomer. Trimesoyl chloride (TMC) was used as organic phase monomer. ATR-IR, scanning electron microscope (SEM) and gas sorption analyzer (GSA) were applied in structural analysis of CMM. The uniform design and SPSS were applied in membrane preparation and data analysis.The polymer ATR-IR spectroscopy shows IP occurrence between aqueous phase monomer and organic phase monomer. Polymer contains both sulfonate group and quaternary ammonium group. It show that the membrane has the feature of CMM. Regression equation was gained, and it shows the CMM retention would enhance with the concentration increase of DIA, PEI and SDS and decrease with concentration decrease of FB in experimental range. The composite layer can be observed from membrane SEM after IP. The CMM retention to NaCl, polyethylene glycol(PEG), Xylenol orange and Methyl chloride is12.4%, 90%, 96%,88% and 88.2% respectively.


2012 ◽  
Vol 529 ◽  
pp. 569-573 ◽  
Author(s):  
Lei Wen ◽  
Wei Wang

Hollow fiber composite nanofiltration (NF) membranes were prepared by interfacial polymerization method, with polysulfone (PSF) hollow fiber ultrafiltration membrane as base membrane, piperazine (PIP) as the aqueous phase monomer and trimesoyl chloride (TMC) as the organic phase monomer. The effects of aqueous phase composition on composite NF were discussed. The experimental results show that the optimum compositions in aqueous phase: 1wt% PIP, 0.05wt% MPDA, 1wt% TEA, 3wt% sulfamic acid. The best rejection to MgSO4 was 94.7%, and water flux was 66.1L•m-2•h-1.


2021 ◽  
Vol 118 (37) ◽  
pp. e2019891118
Author(s):  
Yang Lu ◽  
Ruoyu Wang ◽  
Yuzhang Zhu ◽  
Zhenyi Wang ◽  
Wangxi Fang ◽  
...  

In this study, we report the emergence of two-dimensional (2D) branching fractal structures (BFS) in the nanoconfinement between the active and the support layer of a thin-film-composite polyamide (TFC-PA) nanofiltration membrane. These BFS are crystal dendrites of NaCl formed when salts are either added to the piperazine solution during the interfacial polymerization process or introduced to the nascently formed TFC-PA membrane before drying. The NaCl dosing concentration and the curing temperature have an impact on the size of the BFS but not on the fractal dimension (∼1.76). The BFS can be removed from the TFC-PA membranes by simply dissolving the crystal dendrites in deionized water, and the resulting TFC-PA membranes have substantially higher water fluxes (three- to fourfold) without compromised solute rejection. The flux enhancement is believed to be attributable to the distributed reduction in physical binding between the PA active layer and the support layer, caused by the exertion of crystallization pressure when the BFS formed. This reduced physical binding leads to an increase in the effective area for water transport, which, in turn, results in higher water flux. The BFS-templating method, which includes the interesting characteristics of 2D crystal dendrites, represents a facile, low-cost, and highly practical method of enhancing the performance of the TFC-PA nanofiltration membrane without having to alter the existing infrastructure of membrane fabrication.


2015 ◽  
Vol 1107 ◽  
pp. 383-388
Author(s):  
Nurul Ain Jalanni ◽  
Mazrul Nizam Abu Seman ◽  
Che Ku Muhammad Faizal Che Ku Yahya

Interfacial polymerization of a thin film composite (TFC) layer on top of a miroporous support membrane or other porous substrate is one of adequate method to form nanofiltration membrane in order to remove humic acid. Ultrafiltration (UF) polyethersulfone (PES) was used as membrane base support. Reaction occurred on the surface of membrane between two phase which are triethanolamine (TEOA) and trimesoyl chloride (TMC) as aqueous solution and organic solution respectively. Membrane that produced characterized by permeability, charged solutes rejection including salt solutions (NaCl and Na2SO4) and humic acid removal. Properties of membrane can be attributed with the changes of monomer concentration and reaction time. Pure water flux Jw for membranes calculated as a function of applied pressure to membrane ΔP. Thus, flux increased linearly with operating pressure is applied to membrane where meets Hagen-Poiseuille equation and gradient of every straight line give pure water permeability data. The variation of reaction time (15, 25 and 35 min) at 8% (w/v) monomer concentrations can affect the properties of the membrane produced and decreasing water permeabilities. The rejection order of the membrane changed from 0.001 M Na2SO4 > 0.1M Na2SO4> 0.001M NaCl > 0.1M NaCl. Humic acid removal resulted almost fully rejection showed that nanofiltration membrane is one of the best methods in water treatment technology.


RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4361-4369 ◽  
Author(s):  
Yuantao He ◽  
Jing Miao ◽  
Shunquan Chen ◽  
Rui Zhang ◽  
Ling Zhang ◽  
...  

A positively charged composite hollow fiber nanofiltration (NF) membrane was prepared via interfacial polymerization by using chitosan lactate and trimesoyl chloride (TMC).


2006 ◽  
Vol 930 ◽  
Author(s):  
Ian D. Norris ◽  
Malcolm C. Morrison ◽  
Benjamin R. Mattes

ABSTRACTHigh flux composite hollow fiber membranes for brackish water desalination based on the interfacial polymerization of a cross-linked polyamide salt rejecting layer onto a semi-permeable hollow fiber support have been developed. These hollow fiber membranes exploit the advantages of using a thin-film composite reverse osmosis membrane (higher flux and salt rejection) with the higher surface area/volume ratio of hollow fiber membrane elements. The composite hollow fiber membranes were prepared by coating a polysulfone hollow fiber with a polyamide salt rejecting layer based on the interfacial polymerization reaction between m-phenylenediamine and trimesoyl chloride/isophthaloyl dichloride. The RO figures-of-merit of these composite polyamide hollow fiber membranes were evaluated for the desalination of a synthetic brackish water feed (2,000 ppm NaCl) at 225 psi over a 60 hour period. After an initial break-in period in which the flux declined 30% due to membrane compaction, the stabilized RO figures-of-merit for these hollow fiber membranes were a water flux of 280 L/m2·day and a salt rejection of 99.1%. Based on the water flux and packing density of the membrane, it is estimated that the stable production of potable water of a hollow fiber membrane element containing these composite membranes will be between 20 and 30% greater than that of a similarly sized spiral wound brackish water membrane element.


Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 66 ◽  
Author(s):  
Yuandong Jia ◽  
Shuangqing Sun ◽  
Shunshun Li ◽  
Zhikun Wang ◽  
Fushan Wen ◽  
...  

Ultrafiltration (UF) membranes have found great application in sewage purification and desalination due to their high permeation flux and high rejection rate for contaminants under low-pressure conditions, but the flux and antifouling ability of UF membranes needs to be improved. Tetrakis (4-carboxyphenyl) porphyrin (TCPP) has good hydrophilicity, and it is protonated under strongly acidic conditions and then forms strong hydrogen bonds with N, O and S, so that the TCPP would be well anchored in the membrane. In this work, NaHCO3 was used to dissolve TCPP and TMC (trimesoyl chloride) was used to produce a strong acid. Then, TCPP was modified in a membrane with a different rejection rate by a method similar to interfacial polymerization. Performance tests of TCPP/polysulfone (PSf) membranes show that for the membrane with a high BSA (bovine serum albumin) rejection, when the ratio of NaHCO3 to TCPP is 16:1 (wt.%), the pure water flux of membrane Z1 16:1 is increased by 34% (from 455 to 614 Lm−2h−1bar−1) while the membrane retention was maintained above 95%. As for the membrane with a low BSA rejection, when the ratio of NaHCO3 to TCPP was 32:1, the rejection of membrane B2 32:1 was found to increase from 81% to 96%. Although the flux of membrane B2 32:1 decreased, it remained at 638 Lm−2h−1bar−1, which is comparable to the reported polymer ultrafiltration membrane. The above dual results are thought to be attributed to the synergistic effect of protonated TCPP and NaHCO3, where the former increases membrane flux and the latter increases the membrane rejection rate. This work provides a way for the application of porphyrin and porphyrin framework materials in membrane separation.


Sign in / Sign up

Export Citation Format

Share Document