New Polyester Nanofiltration (NF) Membrane for Humic Acid Removal

2015 ◽  
Vol 1107 ◽  
pp. 383-388
Author(s):  
Nurul Ain Jalanni ◽  
Mazrul Nizam Abu Seman ◽  
Che Ku Muhammad Faizal Che Ku Yahya

Interfacial polymerization of a thin film composite (TFC) layer on top of a miroporous support membrane or other porous substrate is one of adequate method to form nanofiltration membrane in order to remove humic acid. Ultrafiltration (UF) polyethersulfone (PES) was used as membrane base support. Reaction occurred on the surface of membrane between two phase which are triethanolamine (TEOA) and trimesoyl chloride (TMC) as aqueous solution and organic solution respectively. Membrane that produced characterized by permeability, charged solutes rejection including salt solutions (NaCl and Na2SO4) and humic acid removal. Properties of membrane can be attributed with the changes of monomer concentration and reaction time. Pure water flux Jw for membranes calculated as a function of applied pressure to membrane ΔP. Thus, flux increased linearly with operating pressure is applied to membrane where meets Hagen-Poiseuille equation and gradient of every straight line give pure water permeability data. The variation of reaction time (15, 25 and 35 min) at 8% (w/v) monomer concentrations can affect the properties of the membrane produced and decreasing water permeabilities. The rejection order of the membrane changed from 0.001 M Na2SO4 > 0.1M Na2SO4> 0.001M NaCl > 0.1M NaCl. Humic acid removal resulted almost fully rejection showed that nanofiltration membrane is one of the best methods in water treatment technology.

2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Mohammad Amirul Mohd Yusof ◽  
Mazrul Nizam Abu Seman

Nowadays, wide applications of forward osmosis (FO) technology have been huge attention in solving the water shortage problems. Hence, the performance of thin film composite (TFC) forward osmosis membrane via interfacial polymerization (IP) was studied. 2% and 1% w/v of piperazine (PIP) and 0.15% w/v of trimesoyl chloride (TMC) were reacted with 3 different reaction time (60s, 30s, and 10s). The fabricated membranes were then characterized by FTIR, contact angle measurement and FESEM. Pure water flux, humic acid rejection (represent NOM) and salt leakage were evaluated to obtain the best polyamide FO membrane. The results demonstrated that polyamide FO membranes fabricated with 2% w/v possess a higher hydrophilic properties compared to 1% w/v. In addition, regardless of monomer concentrations, at longest reaction time (60s), there is no significant change in water flux. Membrane fabricated at 60s of reaction time exhibited water flux of 1.90 LMH and 1.92 LMH for 2% w/v and 1% w/v of PIP concentrations, respectively. The same trend also observed for humic acid rejection (93.9%-94.6%). The salt leakage test revealed that the minimum salt reverse diffusion (0.01-0.02 GMH) could be achieved for membrane fabricated at longest reaction time of 60s for both PIP concentrations. As conclusion, manipulating monomer concentrations and reaction time is the main key to obtain an optimal polyamide layer with high membrane performance covering higher water flux, higher removal of humic acid and lower reverse salt diffusion.  


2012 ◽  
Vol 65 (1) ◽  
pp. 171-176 ◽  
Author(s):  
Jianmian Deng ◽  
Yatao Zhang ◽  
Jindun Liu ◽  
Haoqin Zhang

Three-bore hollow fiber charged nanofiltration (NF) membrane was prepared by interfacial polymerization (IP). The results showed that the flux and rejection of NF membrane prepared in this study increased with the increasing in the operating pressure. The water flux decreased and rejection for obvious dyes increased as the solute concentration increased. The separation factor for mixture of Xylenol orange/NaCl decreased when NaCl concentration in solution increased and could reach to as high as 18. In addition, three-bore hollow fiber charged nanofiltration membrane prepared in this study has excellent stability for strong acid (pH = 3), strong alkali (pH = 11) and high temperature solution (80 °C).


2018 ◽  
Vol 77 (6) ◽  
pp. 1558-1569 ◽  
Author(s):  
Nader Yousefi ◽  
Ramin Nabizadeh ◽  
Simin Nasseri ◽  
Mehdi Khoobi ◽  
Shahrokh Nazmara ◽  
...  

Abstract The aim of this study was to investigate membrane synthesis by interfacial polymerization methods, the application of synthesized nano-composite membrane for natural organic matters (NOMs) removal from water, evaluation of fouling mechanism and antifouling properties. Polysulfone (PSf) was selected as a porous ultrafiltration membrane support and interfacial polymerization was done using tannic acid (TA) and Trimesoyl chloride (TMC) with central composite design (CCD). The effects of TA and TMC monomer concentrations, reaction time and post treatment temperature was evaluated. The synthesized membrane was characterized by field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and water contact angle. Based on the results, the optimum conditions for synthesizing nano-composite were: TA concentration of 0.27 g/L, TMC concentration of 0.22 g/L, reaction time of 68.29 min and temperature of 25.23 °C. The predicted optimum operational conditions were a NOM concentration of 6.429 mg/L; time of 10.931 min and applied pressure of 1.039 bar. The potential applications of the synthesized nano-composite membranes with interfacial polymerization can enhance water treatment.


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


1994 ◽  
Vol 29 (9) ◽  
pp. 213-223 ◽  
Author(s):  
Sandra K. Kaiser ◽  
Richard R. Dague

The “temperature-phased anaerobic biofilter” or TPAB process (U.S. Patent pending), is a new high-rate anaerobic treatment system that includes a thermophilic (56°C) biofilter connected in series with a mesophilic (35°C) biofilter providing for two-temperature, two-phase treatment. Three TPAB systems of different thermophilic:mesophilic reactor size ratios were operated at system HRTs of 24 hrs, 36 hrs, and 48 hrs to characterize performance and to determine if an optimum size ratio exists between the thermophilic and mesophilic phases. The three TPAB systems achieved SCOD reductions in excess of 97% and TCOD reductions in excess of 90% for a synthetic milk substrate over a range of system COD loadings from 2 g COD/L/day to 16 g COD/L/day. There was little difference in performance between the three TPAB systems based on COD reduction and methane production. The 1:7 ratio of thermophilic:mesophilic phase TPAB system performed as well as the 1:3 and 1:1 size ratio TPAB systems. In applications of the process, a relatively small thermophilic first-phase can be used without sacrificing overall two-phase system performance. The TPAB process is a promising new anaerobic treatment technology with the ability to achieve higher efficiencies of organic removals than is generally possible for single-stage anaerobic filter systems operated at equivalent HRTs and organic loadings.


Author(s):  
Xiaoguang Zhang ◽  
Xuexing Chen ◽  
Qingchun Chen ◽  
Zhaolong Deng ◽  
Yan Liu ◽  
...  

A series of nanofiltration membranes were prepared by interfacial polymerization of piperazine and terephthaloyl chloride on the surface of polyacrylonitrile (PAN) ultrafiltration membranes. ZnO nanoparticles were incorporated in the active separation layer to modify the performances of the membranes. The preparation conditions as the monomer concentration, dosage of nano-ZnO particles and the reaction time on removal of a simulated radioactive nuclide Co (II) were investigated. Fourier transform infrared in attenuated total reflection mode verified the formation of polyamide on the PAN ultrafiltration membrane. The scanning electron microscope images showed that the nano-ZnO particles can homogeneously fixed on the membrane surface. The retention of Co (II) increased with increasing the dosage of nano-ZnO in the range of 0∼0.03 g. Further adding more nano-ZnO, the rejection rate of Co (II) first decreased and then increased. The concentration of piperazine and terephthaloyl chloride showed similar effect on removal of Co (II) ion. 5 minutes polymerization time was sufficient to form an active separation layer on the substrate membrane which changed the separation mechanism from ultrafiltration to nanofiltration. The separation performance of NF3 prepared by the following conditions was optimum: 0.03g nano-ZnO, 0.6 wt% piperazine, 0.5 wt% terephthaloyl chloride, and the reaction time was 15 min. The rejection rates of 1000 mg/L Na2SO4 and Co2+ in CoCl2 solution were 90% and 75% respectively. The Co (II) removal rate can be increased to nearly 90% by using ethylenediaminetetraacetic acid disodium salt. Increasing the operation pressure or the feeding concentration of Co (II) can also improve the performances of the membranes in this experiment.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 248
Author(s):  
Saad A. Aljlil

In this study, a red clay/nano-activated carbon membrane was investigated for the removal of oil from industrial wastewater. The sintering temperature was minimized using CaF2 powder as a binder. The fabricated membrane was characterized by its mechanical properties, average pore size, and hydrophilicity. A contact angle of 67.3° and membrane spore size of 95.46 nm were obtained. The prepared membrane was tested by a cross-flow filtration process using an oil-water emulsion, and showed a promising permeate flux and oil rejection results. During the separation of oil from water, the flux increased from 191.38 to 284.99 L/m2 on increasing the applied pressure from 3 to 6 bar. In addition, high water permeability was obtained for the fabricated membrane at low operating pressure. However, the membrane flux decreased from 490.28 to 367.32 L/m2·h due to oil deposition on the membrane surface; regardless, the maximum oil rejection was 99.96% at an oil concentration of 80 NTU and a pressure of 5 bar. The fabricated membrane was negatively charged, as were the oil droplets, thereby facilitating membrane purification through backwashing. The obtained ceramic membrane functioned well as a hydrophilic membrane and showed potential for use in oil wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document