The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge

2012 ◽  
Vol 65 (10) ◽  
pp. 1875-1881 ◽  
Author(s):  
Jan Bartacek ◽  
Fernando G. Fermoso ◽  
Frank Vergeldt ◽  
Edo Gerkema ◽  
Josef Maca ◽  
...  

Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as ethylenediaminetetraacetate (EDTA) or diethylenetriaminepentaacetate (DTPA). It has been shown that although the stimulating effect of the complexed metal species (e.g. [CoEDTA]2−) is very fast, it is not sustainable when applied to metal-limited continuously operated reactors. The present paper describes transport phenomena taking place inside single methanogenic granules when the granules are exposed to various metal species. This was done using magnetic resonance imaging (MRI). The MRI results were subsequently related to technological observations such as changes in methanogenic activity upon cobalt injection into cobalt-limited up-flow anaerobic sludge blanket (UASB) reactors. It was shown that transport of complexed metal species is fast (minutes to tens of minutes) and complexed metal can therefore quickly reach the entire volume of the granule. Free metal species tend to interact with the granular matrix resulting in slower transport (tens of minutes to hours) but higher final metal concentrations.

2013 ◽  
Vol 634-638 ◽  
pp. 182-186
Author(s):  
Juan Wang ◽  
Qin Zhong

With the aim to use anaerobic granular sludge, the methanogenic activity inhibition and recovery of anaerobic granular sludge from an industrial anaerobic reactor (s1) were investigated by measuring the methane volume at low pH. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was inoculated with s1.s1 was used to remove Zn2+ in wastewater. The results show that activity of s1 is similar when the pH value is 6.5 to 7.0. The methane volume is obviously decreased when the pH value is 6.0. The activity is completely inhibited when the pH value is 4.5. The activity is fully recovered when the pH is above 6.5 and hardly recovers when the pH fell to 4.5. The main Zn2+ removal mechanism is chemical adsorption.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 445-452 ◽  
Author(s):  
Herbert H. P. Fang ◽  
Ivan W. C. Lau

Performances during startup of three 2.8-litre UASB (upflow anaerobic sludge blanket) reactors operated under thermophilic condition were investigated. All reactors were seeded with mesophilic sludges: one with flocculent digester sludge (Reactor-F), another with UASB granules (Reactor-G), and the third with disintegrated granules (Reactor-D). The reactors were operated in parallel at 55°C and 24 hours of retention time, using sucrose and milk as substrate at COD (chemical oxygen demand) loadings up to 10 g-COD/l·day. Immediately after temperature was step-increased from 37°C to 55°C, all reactors encountered sludge washout and deterioration of COD removal efficiency; however, the impact of temperature increase was more severe on Reactor-F. Sludge granulation took place in all reactors; first granules became noticeable after 45 days in Reactor-D, and after 90 days in Reactor-F. Reactor-G and Reactor-D were capable of removing 95% of soluble COD after 75 days, while Reactor-F after 110 days. Throughout this study, there was little difference in performance between Reactors G and D. The thermophilic granule were estimated to have a yield of 0.099 g-VSS/g-COD, and a methanogenic activity of 0.71-1.55 g-methane-COD/g-VSS·day, comparable to that of mesophilic granules.


2013 ◽  
Vol 69 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Ying Zhang ◽  
Yang Liu ◽  
Miao Hu ◽  
Zhao Jiang

The granulation process was examined in an 8 L laboratory upflow anaerobic sludge blanket (UASB) reactor using synthetic wastewater contained trichloroethylene (TCE). Glucose and lactate were used as primary substrates. The anaerobic bacteria biomass were acclimated and granulated by increasing the chemical oxygen demand (COD) and TCE loadings. Anaerobic sludge was acclimated successfully in 120 days in the anaerobic sludge acclimation appliance. Since start-up, the UASB was operated as a continuous-flow reactor under the following operation conditions: temperature of (35 ± 1)°C, pH ≈ 7.2, hydraulic retention time of 10 h, COD of 2.5 g L−1 and TCE loading rate from 50.5 to 252.3 mg · (L d)−1. The UASB reactor was started successfully. The sludge volume index was 13 mL g−1. The maximum specific methanogenic activity was 1.42 gCOD · (gVSS.d)−1. After 90 days, 85% of COD and 85% of TCE removal efficiencies were achieved. The TCE degrading granular sludge had an average diameter of 2.7 mm and total suspended solid of 52 g L−1. Anaerobic sludge adsorption of TCE reached adsorption equilibrium in 0.5 h, and in 1 h reached desorption equilibrium. Furthermore, cis-dichloroethylene and vinyl chloride were detected, which showed that the removal of TCE was caused by both adsorption and biodegradation but mainly by biodegradation.


1999 ◽  
Vol 40 (8) ◽  
pp. 91-97 ◽  
Author(s):  
D. Jeison ◽  
R. Chamy

In the present study an upflow anaerobic sludge blanket (UASB) reactor and an expanded granular sludge bed (EGSB) reactor were operated with different substrates under the same conditions. Ethanol, diluted beer (as a brewery effluent model) and wastewater from a coffee industry were tested. Ethanol was fed at two different concentrations: 0.5 and 10 gCOD/l. Beer was diluted to a concentration of 3gCOD/l and coffee wastewater had a concentration of approximately 7 gCOD/l. During the operation, samples of sludge were taken from both reactors to measure TSS, VSS, size distribution and methanogenic activity. Batch assays were performed in a third reactor using ethanol at two different superficial velocities to measure substrate uptake. The overall COD removal for ethanol at 500 gCOD/l in EGSB and UASB reactors was similar (around 80% for a sludge loading rate of 0.8 gCOD/day/gVSS). Granular sludge experienced an important development in its characteristics during the operation with ethanol. Superficial velocity showed a positive effect on COD removal for ethanol below 5m/h. There were no big differences in the removal rates during the operation with coffee wastewater. Probably in this effluent the process is limited by the reaction kinetics instead of by the mass transfer, due to the complex nature of the waste. With diluted beer, EGSB reactor showed a better performance than the UASB.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 325-332 ◽  
Author(s):  
Raghida Lepistö ◽  
Jukka Rintala

The study focused on the effluent quality and sludge characteristics during the start-up and operation of extreme thermophilic (70 to 80°C) upflow anaerobic sludge bed (UASB) reactors, inoculated with mesophilic and thermophilic granular sludge and fed with acetate, volatile fatty acids (VFA), and thermomechanical pulping (TMP) whitewater. Low effluent quality and long start-up periods were observed during the start-up of the 70 to 76°C, VFA-fed UASB reactors inoculated with mesophilic granulae, while better effluent quality and considerably shorter start-up periods were observed when thermophilic (55/70°C) inocula were used. With VFA feed, a significant amount of acetate was removed at 70°C and even at 80°C, while propionate removal was negligible. With TMP whitewater feed, low VFA effluent concentration was obtained at 70°C. The volatile solids (VS) and the VS/total solids (TS) content of the sludge decreased significantly during the first 2–3 months of operation when mesophilic inocula were used. The initial specific methanogenic activity (ISMA) of the extreme thermophilic sludge decreased with increasing temperature and was slightly higher on glucose than on acetate. At 70 to 80°C, various rod-like bacteria were dispersed through the granulae in either individual or in low density micro colonies surrounded with a varying degree of precipitates.


2004 ◽  
Vol 49 (11-12) ◽  
pp. 69-76 ◽  
Author(s):  
J.E. Schmidt ◽  
D.J. Batstone ◽  
I. Angelidaki

Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m-3 reactor day-1, with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process.


1997 ◽  
Vol 35 (10) ◽  
pp. 183-188 ◽  
Author(s):  
George R. Zoutberg ◽  
Peter de Been

In this paper a new type of anaerobic reactor is presented. The system has been developed by Biothane Systems and is marketed under the name Biobed® EGSB reactor (Expanded Granular Sludge Bed). In this reactor it is possible to grow and maintain a granular sludge under high liquid (10 m/h) and gas velocities (7 m/h). The most striking feature is the growth of biomass in a granular form, similar to the UASB granules: no carrier material is used. The process is specially suitable to treat waste water that contains compounds that are toxic in high concentrations and that only can be degraded in low concentrations (chemical industry). An example is given for a waste water originating from a chemical factory (Caldic Europoort) in the Netherlands. In this factory formaldehyde is produced from methanol. The waste water is characterised by high concentrations of these compounds (formaldehyde to 10 g/l and methanol to 20 g/l). Due to the special configuration of the anaerobic reactor it is possible to realise a removal efficiency for both compounds of more than 98%. It is also possible to operate the reactor as an ultra high loaded anaerobic reactor (to 30 kg COD/m3.day) for applications in other sectors of industry (e.g. brewery, yeast, sugar, corn ethanol production etc).


Sign in / Sign up

Export Citation Format

Share Document