Preparation of mesoporous activated carbon from palm-date pits: optimization study on removal of bentazon, carbofuran, and 2,4-D using response surface methodology

2013 ◽  
Vol 68 (7) ◽  
pp. 1503-1511 ◽  
Author(s):  
J. M. Salman ◽  
F. M. Abid

Palm-date pits were used to prepare activated carbon by physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO2) gasification. The effects of variable parameters, activation temperature, activation time and chemical impregnation ratios (KOH: char by weight) on the preparation of activated carbon and for removal of pesticides: bentazon, carbofuran and 2,4-dichlorophenoxyacetic acid (2,4-D) were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were respectively employed to correlate the effect of variable parameters on the preparation of activated carbon used for removal of pesticides with carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from palm-date pits were found to be: activation temperature of 850 °C, activation time of 3 h and chemical impregnation ratio of 3.75, which resulted in an activated carbon yield of 19.5% and bentazon, carbofuran, and 2,4-D removal of 84, 83, and 93%, respectively.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jassem M. Salman

Mesoporous activated carbon prepared from branches of pomegranate trees (BP) using physiochemical activation (potassium hydroxide treatment and carbon dioxide gasification). Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were respectively employed to correlate the activated carbon preparation variables. The effects of the activation temperature, activation time, and chemical impregnation ratios on the carbon yield, methylene blue (MB) removal were investigated. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from branches of pomegranate trees (BP) were found to be activation temperature of 620.5°C, activation time of 1.4 h, and chemical impregnation ratio of 1.5. The carbon yield was found to be 16% while the removal of methylene blue was found to be 92.5%.


2012 ◽  
Vol 184-185 ◽  
pp. 1110-1113 ◽  
Author(s):  
Li Fen He ◽  
Qi Xia Liu ◽  
Tao Ji ◽  
Qiang Gao

Various jute-based activated carbon fibers were prepared by using jute fibers as raw materials and phosphoric acid as activating agent. The effects of three main factors such as concentration of activating agent, activation temperature and activation time on the yield and adsorptive properties of active carbon fibers were investigated via orthogonal experiments. The surface physical morphology of jute-based activated carbon fiber was also observed by using Scanning Electron Microscope. Results showed that the optimum conditions were phosphoric acid concentration of 4 mol/L, activation temperature of 600 °C and activation time of 1h. The yield, iodine number and amount of methylene blue adsorption of the active carbon fiber prepared under optimum conditions were 37.99 %, 1208.87 mg/g and 374.65 mg/g, respectively.


2020 ◽  
Vol 54 (1) ◽  
pp. 54-60
Author(s):  
S. A. Kulaishin ◽  
M. D. Vedenyapina ◽  
L. R. Sharifullina ◽  
A. L. Lapidus

2019 ◽  
Vol 50 (5) ◽  
pp. 599-615
Author(s):  
Zhuanyong Zou ◽  
Xin Liu ◽  
Jiahui Ding ◽  
Tanqi Chen ◽  
Xungai Wang

Converting waste fiber to high value-added carbonaceous materials has been considered as an effective and affordable route in response to the increasing volume of waste fiber in recent year. In this study, we are the first to prepare activated carbon powder derived from cashmere guard hair as a renewable waste protein fiber, using a chemical activation method at different impregnation ratios of K2CO3/cashmere guard hair char and activation temperatures ranging from 400℃ to 600℃. Characterization of the activated carbon powder was carried out by morphology study, specific surface area study, and adsorption study. Results have shown that the increase of the impregnation ratio and the activation temperature created more microporous structure in the activated carbon powder, and then increased the specific surface area of the activated carbon powder as well as the amount of methylene blue adsorbed. However, the carbon yield increases with the increase in the impregnation ratio of K2CO3/cashmere guard hair char and decreases with the increase in the activation temperature. The activated carbon powder, activated by the condition of 1:2 K2CO3/cashmere guard hair char impregnation ratio and 600℃ activation temperature, has a specific surface area of 764.86 m2g−1 and a carbon yield of 14.07 wt%. Compared to the activated carbon powder derived from fine merino wool fibers, the activated carbon powder derived from cashmere guard hair has higher carbon yield, surface area, and total pore volume, showing a superior adsorption performance.


CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Gregório Mateus Santana ◽  
Roberto Carlos Costa Lelis ◽  
Emerson Freitas Jaguaribe ◽  
Rayssa de Medeiros Morais ◽  
Juarez Benigno Paes ◽  
...  

ABSTRACT Considering the water scarcity problems facing many countries, the need for water reuse can make activated carbon (AC) an essential product for modern society. In this context, to contribute with better activated carbons that could be used to serve in water treatment, this article discusses these materials production, using bamboo as raw material, and analyses their application effectiveness. The bamboo was collected, transformed into activated carbon, by simultaneous chemical and physical activations, and named H3PO4/H2OAC. The obtained material was characterized by its yield, apparent density, ash content, thermogravimetric analysis, surface area, methylene blue and iodine indexes, pH and point of zero charge analysis, scanning electron microscopy and Boehm titration method. The AC was used as adsorbent for removing the metribuzin, 2,4-dichlorophenoxyacetic acid and furadan pesticides. The H3PO4/H2OAC had a surface area of 1196.30 m².g-1 and the obtained adsorption capacity was elevated for furadan (868.98 mg.g-1), metribuzin (756.47 mg.g-1) and 2,4-dichlorophenoxyacetic acid (274.70 mg.g-1).


Sign in / Sign up

Export Citation Format

Share Document