Experiences from the full-scale implementation of a new two-stage vertical flow constructed wetland design

2013 ◽  
Vol 69 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Guenter Langergraber ◽  
Alexander Pressl ◽  
Raimund Haberl

This paper describes the results of the first full-scale implementation of a two-stage vertical flow constructed wetland (CW) system developed to increase nitrogen removal. The full-scale system was constructed for the Bärenkogelhaus, which is located in Styria at the top of a mountain, 1,168 m above sea level. The Bärenkogelhaus has a restaurant with 70 seats, 16 rooms for overnight guests and is a popular site for day visits, especially during weekends and public holidays. The CW treatment system was designed for a hydraulic load of 2,500 L.d−1 with a specific surface area requirement of 2.7 m2 per person equivalent (PE). It was built in fall 2009 and started operation in April 2010 when the restaurant was re-opened. Samples were taken between July 2010 and June 2013 and were analysed in the laboratory of the Institute of Sanitary Engineering at BOKU University using standard methods. During 2010 the restaurant at Bärenkogelhaus was open 5 days a week whereas from 2011 the Bärenkogelhaus was open only on demand for events. This resulted in decreased organic loads of the system in the later period. In general, the measured effluent concentrations were low and the removal efficiencies high. During the whole period the ammonia nitrogen effluent concentration was below 1 mg/L even at effluent water temperatures below 3 °C. Investigations during high-load periods, i.e. events like weddings and festivals at weekends, with more than 100 visitors, showed a very robust treatment performance of the two-stage CW system. Effluent concentrations of chemical oxygen demand and NH4-N were not affected by these events with high hydraulic loads.

2013 ◽  
Vol 68 (7) ◽  
pp. 1461-1467 ◽  
Author(s):  
S. Prigent ◽  
J. Paing ◽  
Y. Andres ◽  
F. Chazarenc

Upgrades to enhance nitrogen removal were tested in a 2 year old pilot vertical flow constructed wetland in spring and summer periods. The effects of a saturated layer and of recirculation were tested in particular. Two pilots (L = 2 m, W = 1.25 m, H = 1.2 m), filled with expanded schist (Mayennite®), were designed with hydraulic saturated layers of 20 and 40 cm at the bottom. Each pilot was fed with raw domestic wastewater under field conditions according to a hydraulic load of 15–38 cm d−1 (i.e. 158–401 g COD (chemical oxygen demand) m−2 d−1) and to recirculation rates ranging from 0% up to 150%. The initial load during the first 2 years of operation resulted in an incomplete mineralized accumulated sludge leading to total suspended solids (TSS), COD and biochemical oxygen demand (BOD5) release. A 40 cm hydraulic saturated layer enabled an increase of 5–10% total nitrogen (TN) removal compared to a 20 cm saturated layer. Recirculation allowed the dilution of raw wastewater and enhanced nitrification in a single stage. A design of 1.8 m² pe−1 (48 cm d−1, 191 g COD m−2 d−1) with a 40 cm saturated layer and 100% recirculation enabled the French standard D4 (35 mg TSS L−1, 125 mg COD L−1, 25 mg BOD5 L−1), nitrogen concentrations below 20 mg TKN (total Kjeldahl nitrogen) L−1 and 50 mg TN L−1, to be met.


2015 ◽  
Vol 71 (7) ◽  
pp. 1088-1096 ◽  
Author(s):  
B. Kim ◽  
M. Gautier ◽  
G. Olvera Palma ◽  
P. Molle ◽  
P. Michel ◽  
...  

The aim of this study was to characterize the efficiency of an intensified process of vertical flow constructed wetland having the following particularities: (i) biological pretreatment by trickling filter, (ii) FeCl3 injection for dissolved phosphorus removal and (iii) succession of different levels of redox conditions along the process line. A pilot-scale set-up designed to simulate a real-scale plant was constructed and operated using real wastewater. The influences of FeCl3 injection and water saturation level within the vertical flow constructed wetland stage on treatment performances were studied. Three different water saturation levels were compared by monitoring: suspended solids (SS), total phosphorus (TP), dissolved chemical oxygen demand (COD), ammonium, nitrate, phosphate, iron, and manganese. The results confirmed the good overall efficiency of the process and the contribution of the trickling filter pretreatment to COD removal and nitrification. The effects of water saturation level and FeCl3 injection on phosphorus removal were evaluated by analysis of the correlations between the variables. Under unsaturated conditions, good nitrification and no denitrification were observed. Under partly saturated conditions, both nitrification and denitrification were obtained, along with a good retention of SSs. Finally, under saturated conditions, the performance was decreased for almost all parameters.


2017 ◽  
Vol 99 ◽  
pp. 535-542 ◽  
Author(s):  
Adelaide Almeida ◽  
Fátima Carvalho ◽  
Maria J. Imaginário ◽  
Ivone Castanheira ◽  
Ana R. Prazeres ◽  
...  

Desalination ◽  
2009 ◽  
Vol 246 (1-3) ◽  
pp. 55-68 ◽  
Author(s):  
Guenter Langergraber ◽  
Klaus Leroch ◽  
Alexander Pressl ◽  
Kirsten Sleytr ◽  
Roland Rohrhofer ◽  
...  

2017 ◽  
Vol 76 (9) ◽  
pp. 2544-2553 ◽  
Author(s):  
Beata Karolinczak ◽  
Wojciech Dąbrowski

Abstract Septage is wastewater stored temporarily in cesspools. A periodic supply of its significant quantities to small municipal wastewater treatment plants (WWTPs) may cause many operational problems. In the frame of the research, it has been proposed to utilize vertical flow constructed wetlands for pre-treatment of septage prior to its input to the biological stage of a WWTP. The aim of the work was to assess the effectiveness of pre-treatment in relation to factors such as: seasonality, hydraulic load, pollutants load of the VF bed and interactions between these factors. The results proved that application of a VF bed to septage pre-treatment can significantly reduce the concentration of pollutants (biochemical oxygen demand (BOD5): 82%, chemical oxygen demand (COD): 82%, total suspended solids (TSS): 91%, total nitrogen (TN): 47%, ammonia nitrogen (NH4-N): 70%), and thus decrease the loading of the biological stage of a WWTP. The mathematical models of mass removal process were created. They indicate that in case of all analysed parameters, removed load goes up with the increase of load in the influent. However, with the increase of hydraulic load, a decrease of the removed BOD5, COD, TSS and total phosphorus, and in vegetation period an increase of TN, can be observed in terms of load. There are no statistically significant effects of seasonality.


1997 ◽  
Vol 35 (5) ◽  
pp. 223-230 ◽  
Author(s):  
Monika Schönerklee ◽  
Ferdinand Koch ◽  
Reinhard Perfler ◽  
Raimund Haberl ◽  
Johannes Laber

In Strengberg, Lower Austria, a vertical flow reed bed system (gravel/sand) was chosen as a new type of tertiary treatment which was designed as a full scale pilot plant with various possibilities of operational use. The surface of the vertical flow pilot plant amounts to about 600 m2 and is divided into four beds whereby two different depths of substrate are used. The application of the conventional plant effluent is carried out in intermittent flushes and at changeable time intervals. Final nitrification and partial denitrification and elimination of phosphorus are the main goals to be achieved. In the framework of the present research project the load limits will be determined by gradually raising the influent load. The efficiency and operational reliability within the whole year period (summer/winter) are considered to be an important factor for establishing general dimensioning approaches. The pilot plant has been in operation for more than one year now. Different operational stages up to a hydraulic load of 1.3 m2.p.e.−1 (i.e. 0.75 m2.p.e.−1) were carried out. The average chemical oxygen demand (COD) of the reed bed effluents varied from 1 to 20 mg.1−1. Not surprisingly the ammonium (NH4-N) results showed more variation. Results, thus far, indicate NH4-N removal efficiencies between 40% and 90%.


Sign in / Sign up

Export Citation Format

Share Document