Environmental assessment of different dewatering and drying methods on the basis of life cycle assessment

2013 ◽  
Vol 69 (4) ◽  
pp. 783-788 ◽  
Author(s):  
J. Stefaniak ◽  
A. Żelazna ◽  
A. Pawłowski

Sewage sludge is an inevitable product of wastewater treatment in municipal wastewater plants and its amount has increased dramatically due to the growing number of sewage systems users. This sludge needs to be adequately treated in order to decrease its hazardous properties and any negative influence on the environment. In this paper, gate to gate analysis, on the basis of life cycle assessment (LCA), was carried out in order to compare the environmental impact of alternative ways of sludge processing employing a dewatering press and three different kinds of dryers – belt dryer, container dryer and batch dryer. SimaPro 7.2 software and Ecoinvent 2.2 database were used to estimate the carbon footprint and energy balance of these processes. The main energy consumption in the scenarios analyzed is caused by the drying process. The solution based on application of the batch dryer allows a saving of 39.6% of energy compared with the most energy-consuming solution using a belt dryer. Sludge processing using belt and container dryers cause greater environmental burdens.

2015 ◽  
Vol 73 (4) ◽  
pp. 835-842 ◽  
Author(s):  
David Blanco ◽  
Sergio Collado ◽  
Adriana Laca ◽  
Mario Díaz

Anaerobic digestion (AD) is being established as a standard technology to recover some of the energy contained in the sludge in wastewater treatment plants (WWTPs) as biogas, allowing an economy in electricity and heating and a decrease in climate gas emission. The purpose of this study was to quantify the contributions to the total environmental impact of the plant using life cycle assessment methodology. In this work, data from real operation during 2012 of a municipal WWTP were utilized as the basis to determine the impact of including AD in the process. The climate change human health was the most important impact category when AD was included in the treatment (Scenario 1), especially due to fossil carbon dioxide emissions. Without AD (Scenario 2), increased emissions of greenhouse gases, mostly derived from the use of electricity, provoked a rise in the climate change categories. Biogas utilization was able to provide 47% of the energy required in the WWTP in Scenario 1. Results obtained make Scenario 1 the better environmental choice by far, mainly due to the use of the digested sludge as fertilizer.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 356
Author(s):  
Paulina Szulc ◽  
Jędrzej Kasprzak ◽  
Zbysław Dymaczewski ◽  
Przemysław Kurczewski

The efficient and timely removal of organic matter and nutrients from water used in normal municipal functions is considered to be the main task of wastewater treatment plants (WWTPs). Therefore, these facilities are considered to be essential units that are required to avoid pollution of the water environment and decrease the possibility of triggering eutrophication. Even though these benefits are undeniable, they remain at odds with the high energy demand of wastewater treatment and sludge processes. As a consequence, WWTPs have various environmental impacts, which can be estimated and categorized using Life Cycle Assessment (LCA) analysis. In this study, a municipal WWTP based in Poznań, Poland, was examined using the method defined in ISO 14040. ReCiPe Endpoint and Midpoint (v1.11), in a hierarchical approach, were used to evaluate the environmental impacts regarding 18 different categories. All calculations were conducted using a detailed database from 2019, which describes each chosen facility. It was found that the energy component, related to the wastewater treatment process demand and electricity production, is the main determinant of the sum of the environmental impact indicators in light of the modelled energy mix. Therefore, it determines the entire process as an environmentally friendly activity.


Sign in / Sign up

Export Citation Format

Share Document