Energy Consuming Comparison of Wastewater Treatment Technologies through Life Cycle Assessment A Case Study of Intelligent Controlled Sequencing Batch Biofilm

Author(s):  
Shuang Sun ◽  
Yoshiro Higano ◽  
Helmut Yabar
Author(s):  
Farhad Sakhaee

Abstract: Life cycle assessment (LCA) is a tool to evaluate environmental impacts based on products of a process. This research is a case study of wastewater treatment facilities of ERTC (Environmental Resources Training Center), SIUE University, based on available data for two semi-annual sludge quantities (year 2015) from sludge management report. The aim of this study is to compare set of possibilities for a wastewater treatment facility at ERTC. The simulation has been done through SimaPro model. Electricity and methane were considered and the cumulative weight of their impacts has been investigated. Total solids for two semi-annual sludge has been fed to the model in kilogram and different production (electricity and methane) configuration were investigated. The most plausible configuration based on the cumulative environmental impact proposed as best practical solution.


2020 ◽  
Vol 8 (6) ◽  
pp. 104535
Author(s):  
Valentina Innocenzi ◽  
Federica Cantarini ◽  
Alessia Amato ◽  
Barbara Morico ◽  
Nicolò Maria Ippolito ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6591 ◽  
Author(s):  
Shinji Takeshita ◽  
Hooman Farzaneh ◽  
Mehrnoosh Dashti

In this paper, a comprehensive life-cycle assessment (LCA) is carried out in order to evaluate the multiple environmental-health impacts of the biological wastewater treatment of the fish-processing industry throughout its life cycle. To this aim, the life-cycle impact assessment method based on endpoint modeling (LIME) was considered as the main LCA model. The proposed methodology is based on an endpoint modeling framework that uses the conjoint analysis to calculate damage factors for human health, social assets, biodiversity, and primary production, based on Indonesia’s local data inventory. A quantitative microbial risk assessment (QMRA) is integrated with the LIME modeling framework to evaluate the damage on human health caused by five major biological treatment technologies, including chemical-enhanced primary clarification (CEPC), aerobic-activated sludge (AS), up-flow anaerobic sludge blanket (UASB), ultrafiltration (UF) and reverse osmosis (RO) in this industry. Finally, a life-cycle costing (LCC) is carried out, considering all the costs incurred during the lifetime. The LCA results revealed that air pollution and gaseous emissions from electricity consumption have the most significant environmental impacts in all scenarios and all categories. The combined utilization of the UF and RO technologies in the secondary and tertiary treatment processes reduces the health damage caused by microbial diseases, which contributes significantly to reducing overall environmental damage.


2013 ◽  
Vol 69 (4) ◽  
pp. 783-788 ◽  
Author(s):  
J. Stefaniak ◽  
A. Żelazna ◽  
A. Pawłowski

Sewage sludge is an inevitable product of wastewater treatment in municipal wastewater plants and its amount has increased dramatically due to the growing number of sewage systems users. This sludge needs to be adequately treated in order to decrease its hazardous properties and any negative influence on the environment. In this paper, gate to gate analysis, on the basis of life cycle assessment (LCA), was carried out in order to compare the environmental impact of alternative ways of sludge processing employing a dewatering press and three different kinds of dryers – belt dryer, container dryer and batch dryer. SimaPro 7.2 software and Ecoinvent 2.2 database were used to estimate the carbon footprint and energy balance of these processes. The main energy consumption in the scenarios analyzed is caused by the drying process. The solution based on application of the batch dryer allows a saving of 39.6% of energy compared with the most energy-consuming solution using a belt dryer. Sludge processing using belt and container dryers cause greater environmental burdens.


2018 ◽  
Vol 17 (7) ◽  
pp. 1155-1169 ◽  
Author(s):  
Massoud Tabesh ◽  
Maryam Feizee Masooleh ◽  
Bardia Roghani ◽  
Seyed Sajed Motevallian

Sign in / Sign up

Export Citation Format

Share Document