Enantioselective analysis and fate of polycyclic musks in a water recycling plant in Sydney (Australia)

2014 ◽  
Vol 69 (10) ◽  
pp. 1996-2003 ◽  
Author(s):  
L. Wang ◽  
S. J. Khan

Synthetic polycyclic musks (PCMs) Galaxolide (HHCB), Tonalide (AHTN), Phantolide (AHDI), Traseolide (ATII) and Cashmeran (DPMI) are chiral chemicals that are commonly used in washing product industries as racemic mixtures. The major source of PCMs in municipal wastewater is from personal care and household products. Recent studies have shown that PCMs may enhance the relative toxicity of other environmental chemicals by inhibiting cellular xenobiotic defence systems. High sensitivity enantioselective analysis of these compounds enables improved characterisation of the environmental persistence and fate of PCMs, distinguishing between individual enantiomers so that a more complete understanding of environmental risks tributed by individual enantiomers may be obtained. Concentrations of PCMs through the various treatment stages of an advanced water recycling plant in Sydney were investigated to assess the removal of these chemicals. Average concentrations of HHCB, AHTN, AHDI, ATII and DPMI in influent were: 2,545, 301, 2, 5 and 33 ng L−1, respectively. In the final effluent, AHDI, ATII and DPMI were not detected, while HHCB and AHTN were still measured at concentrations of 21 and 2 ng L−1. No significant enantioselective transformation was detected during biological or advanced treatment processes.

2006 ◽  
Vol 5 (4) ◽  
pp. 685-692
Author(s):  
Elisabeta Chirila ◽  
Ionela Carazeanu Popovici ◽  
Techin Ibadula ◽  
Alice Iordache

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Samendra P. Sherchan ◽  
Shalina Shahin ◽  
Jeenal Patel ◽  
Lauren M. Ward ◽  
Sarmila Tandukar ◽  
...  

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A–F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April–July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 429-436 ◽  
Author(s):  
L. Wang ◽  
J. Peng ◽  
B. Wang ◽  
L. Yang

An eco-system consisting of integrated ponds and constructed wetland systems is employed in Dongying City, Shandong Province for the treatment and utilization of municipal wastewater with design capacity of 100,000 m3/d. The total capital cost of this system is 680 Yuan (RMB) or US$82/m3/d, or about half that of the conventional system based on activated sludge process, and the O/M cost is 0.1 Yuan (RMB) or US$ 0.012/m3, only one fifth that of conventional treatment systems. The performance of the wastewater treatment and utilization eco-system is quite good with a final effluent COD, BOD, SS, NH3-N and TP of 45–65 mg/l, 7–32 mg/l, 12–35 mg/l, 2–13 mg/l and 0.2–1.8 mg/l respectively and the annual average removals of COD, BOD, SS, NH3-N and TP are 69.1%, 78.3%, 76.4%, 62.1% and 52.9% respectively, which is much better than that of conventional pond system or constructed wetland used separately and illustrates that the artificial and integrated eco-system is more effective and efficient than the simple natural eco-system.


2019 ◽  
Author(s):  
◽  
Liyuan Hou

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Anaerobic treatment is a promising and energy saving process for low-strength wastewater treatment. Roles of half saturation constant (Ks) and maximum specific growth rate (umax) in anaerobic treatment systems, however, are often overlooked. This study proposed to apply specific affinity (defined as umax/ Ks) as the key performance indicator of anaerobic processes treating low-strength wastewater. Furthermore, this study provided a new insight into the relationship between specific affinity and population of methanogens in an anaerobic membrane bioreactor (AnMBR) treating low-strength wastewater. High abundance of Methanosaeta (85.8% of total archaea) was linked to the high specific affinity (1.6 x 10[superscript -3] L/mg COD/d) in acclimated anaerobic sludge, resulting in low effluent chemical oxygen demand (COD) concentrations. Short hydraulic retention times (HRTs) are preferred for AnMBRs to treat low strength wastewater at a high volumetric organic loading rate with lower capital costs. However, short HRTs become a potential bottleneck in anaerobic treatment processes because of possible interspecies mass transfer limitations and membrane fouling in AnMBRs. Till now, little is known about how short HRTs would affect effluent water quality that is linked to the specific affinity of anaerobic sludge and their microbial community structures in AnMBRs. In current study, the overall performance, specific affinity of anaerobic sludge, and dynamics of community structures of an AnMBR treating synthetic municipal wastewater at decreasing HRTs (i.e., 24 h, 12 h, and 6 h) was investigated. A decrease in HRT resulted in sludge with high specific affinity. Correspondingly, Methanosaeta became the dominant methanogens in the AnMBR. Both the effluent water quality and methane yield were enhanced. Municipal wastewater contains complex organic constituents while multi-step biochemical processes are involved in anaerobic treatment processes. Two identical AnMBR were operated under decreasing HRTs (24 h, 12 h, and 6 h, respectively) treating low strength wastewater containing different substrate (acetate or glucose, respectively). As a result, microbial communities in the two AnMBRs diverged. The effluent quality and methane yield were enhanced in the acetate fed AnMBR while methane yield decreased in the glucose fed AnMBR as HRT decreased. Correspondingly, the abundance of Methanosaetaceae in the acetate fed AnMBR increased, but it decreased in the AnMBR fed with glucose. Interestingly, hydrogenotrophic methanogens have a higher proportion in the glucose fed AnMBR than in the acetate fed AnMBR. Overall, a minimum HRT higher than 6 h may be required to treat wastewater containing complex organic matter to ensure a successful operation. To treat the sulfate-containing low-strength wastewater, we proposed a newly designed anaerobic microbial fuel cell (MFC) system that could be used to produce electricity and remove sulfate simultaneously. A maximum voltage output of 129 mV was observed under the following feed conditions: that the ratio of lactate: sulfate was 60:20 and 0:10 in the anodic chamber and cathodic chamber, respectively. The decrease in the organic substrate/sulfate ratio in anodic chamber had a great effect on the electricity production, which could be resulted from an increasing DvH attaching on the electrode at a higher sulfate concertation contributes more electrons transfer. However, there was no significant electricity production at the ratio of two presumably because sulfate in the anodic chamber obtained all electrons produced by lactate without transferring to cathodic chamber since the stoichiometric ratio of lactate and sulfate is two. To our knowledge, this was the first time to show the electricity generation by using Desulfovibrio vulgaris Hildenborough (DvH) in such a MFC configuration. Electron microscopic analysis indicated that nanoscale filaments could enhance the extracellular electron transfer of DvH. DvH biofilm, which is necessary for extracellular electron transfer, suggesting that DvH has multiple direct electron transfer mechanisms. This could further benefit the application of DvH to enhance the power output and treat the real sulfate-containing low-strength wastewater.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 39-46 ◽  
Author(s):  
K.-I. Gil ◽  
E. Choi

The recycle water from sludge processing in municipal wastewater treatment plants causes many serious problems in the efficiency and stability of the mainstream process. Thus, the design approach for recycle water is an important part of any biological nutrient removal system design when a retrofit technology is required for upgrading an existing plant. Moreover, the application of nitrogen removal from recycle water using the nitritation process has recently increased due to economic reasons associated with an effective carbon allocation as well as the minimization of aeration costs. However, for the actual application of recycle water nitritation, it has not been fully examined whether or not additional volume would be required in an existing plant. In this paper, the addition of recycle water nitritation to an existing plant was evaluated based on a volume analysis and estimation of final effluent quality. It was expected that using the reserve volume of the aeration tank in existing plants, recycle water nitritation could be applied to a plant without any enlargement. With the addition of recycle water nitritation, it was estimated that the final effluent quality would be improved and stabilized, especially in the winter season.


2012 ◽  
Vol 65 (7) ◽  
pp. 1179-1189 ◽  
Author(s):  
S. Martin Ruel ◽  
J.-M. Choubert ◽  
H. Budzinski ◽  
C. Miège ◽  
M. Esperanza ◽  
...  

The next challenge of wastewater treatment is to reliably remove micropollutants at the microgram per litre range. During the present work more than 100 substances were analysed through on-site mass balances over 19 municipal wastewater treatment lines. The most relevant substances according to their occurrence in raw wastewater, in treated wastewater and in sludge were identified, and their fate in wastewater treatment processes was assessed. About half of priority substances of WFD were found at concentrations higher than 0.1 μg/L in wastewater. For 26 substances, potential non-compliance with Environmental Quality Standard of Water Framework Directive has been identified in treated wastewater, depending on river flow. Main concerns are for Cd, DEHP, diuron, alkylphenols, and chloroform. Emerging substances of particular concern are by-products, organic chemicals (e.g. triclosan, benzothiazole) and pharmaceuticals (e.g. ketoprofen, diclofenac, sulfamethoxazole, carbamazepine). About 80% of the load of micropollutants was removed by conventional activated sludge plants, but about two-thirds of removed substances were mainly transferred to sludge.


Membranes ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 131 ◽  
Author(s):  
Jiaqi Yang ◽  
Mathias Monnot ◽  
Lionel Ercolei ◽  
Philippe Moulin

Wastewater reuse as a sustainable, reliable and energy recovery concept is a promising approach to alleviate worldwide water scarcity. However, the water reuse market needs to be developed with long-term efforts because only less than 4% of the total wastewater worldwide has been treated for water reuse at present. In addition, the reclaimed water should fulfill the criteria of health safety, appearance, environmental acceptance and economic feasibility based on their local water reuse guidelines. Moreover, municipal wastewater as an alternative water resource for non-potable or potable reuse, has been widely treated by various membrane-based treatment processes for reuse applications. By collecting lab-scale and pilot-scale reuse cases as much as possible, this review aims to provide a comprehensive summary of the membrane-based treatment processes, mainly focused on the hydraulic filtration performance, contaminants removal capacity, reuse purpose, fouling resistance potential, resource recovery and energy consumption. The advances and limitations of different membrane-based processes alone or coupled with other possible processes such as disinfection processes and advanced oxidation processes, are also highlighted. Challenges still facing membrane-based technologies for water reuse applications, including institutional barriers, financial allocation and public perception, are stated as areas in need of further research and development.


Sign in / Sign up

Export Citation Format

Share Document