Design and operation of an eco-system for municipal wastewater treatment and utilization

2006 ◽  
Vol 54 (11-12) ◽  
pp. 429-436 ◽  
Author(s):  
L. Wang ◽  
J. Peng ◽  
B. Wang ◽  
L. Yang

An eco-system consisting of integrated ponds and constructed wetland systems is employed in Dongying City, Shandong Province for the treatment and utilization of municipal wastewater with design capacity of 100,000 m3/d. The total capital cost of this system is 680 Yuan (RMB) or US$82/m3/d, or about half that of the conventional system based on activated sludge process, and the O/M cost is 0.1 Yuan (RMB) or US$ 0.012/m3, only one fifth that of conventional treatment systems. The performance of the wastewater treatment and utilization eco-system is quite good with a final effluent COD, BOD, SS, NH3-N and TP of 45–65 mg/l, 7–32 mg/l, 12–35 mg/l, 2–13 mg/l and 0.2–1.8 mg/l respectively and the annual average removals of COD, BOD, SS, NH3-N and TP are 69.1%, 78.3%, 76.4%, 62.1% and 52.9% respectively, which is much better than that of conventional pond system or constructed wetland used separately and illustrates that the artificial and integrated eco-system is more effective and efficient than the simple natural eco-system.

2005 ◽  
Vol 51 (12) ◽  
pp. 325-329 ◽  
Author(s):  
X. Wang ◽  
X. Bai ◽  
J. Qiu ◽  
B. Wang

The performance of a pond–constructed wetland system in the treatment of municipal wastewater in Kiaochow city was studied; and comparison with oxidation ponds system was conducted. In the post-constructed wetland, the removal of COD, TN and TP is 24%, 58.5% and 24.8% respectively. The treated effluent from the constructed wetland can meet the Chinese National Agricultural and Irrigation Standard. The comparison between pond–constructed wetland system and oxidation pond system shows that total nitrogen removal in a constructed wetland is better than that in an oxidation pond and the TP removal is inferior. A possible reason is the low dissolved oxygen concentration in the wetland. Constructed wetlands can restrain the growth of algae effectively, and can produce obvious ecological and economical benefits.


2003 ◽  
Vol 48 (5) ◽  
pp. 257-266 ◽  
Author(s):  
K. Boonsong ◽  
S. Piyatiratitivorakul ◽  
P. Patanaponpaiboon

The study evaluated the possibility of using mangrove plantation to treat municipal wastewater. Two types of pilot scale (100 × 150 m2) free water surface constructed wetland were set up. One system was a natural Avicennia marina dominated forest system. The other system was a newly planted system in which seedlings of Rhizophora spp., A. marina, Bruguiera cylindrica and Ceriops tagal were planted in 4 strips. Municipal wastewater was retained within the systems for 7 and 3 days, respectively. The results indicated that the average removal percentage of TSS, BOD, NO3-N, NH4-N, TN, PO4-P and TP in the newly planted system were 27.6-77.1, 43.9-53.9, 37.6-47.5, 81.1-85.9, 44.8-54.4, 24.7-76.8 and 22.6-65.3, respectively. Whereas the removal percentage of those parameters in the natural forest system were 17.1-65.9, 49.5-51.1, 44.0-60.9, 51.1-83.5, 43.4-50.4, 28.7-58.9 and 28.3-48.0, respectively. Generally, the removal percentages within the newly planted system and the natural forest system were not significantly different. However, when the removal percentages were compared with detention time, TSS, PO4-P and TP percentages removed were significantly higher in the 7-day detention time treatment. Even though the removal percentages were highly varied and temporally dependent, the overall results showed that mangrove plantation could be used as constructed wetland for municipal wastewater treatment in a similar way to the natural mangrove system.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 39-46 ◽  
Author(s):  
K.-I. Gil ◽  
E. Choi

The recycle water from sludge processing in municipal wastewater treatment plants causes many serious problems in the efficiency and stability of the mainstream process. Thus, the design approach for recycle water is an important part of any biological nutrient removal system design when a retrofit technology is required for upgrading an existing plant. Moreover, the application of nitrogen removal from recycle water using the nitritation process has recently increased due to economic reasons associated with an effective carbon allocation as well as the minimization of aeration costs. However, for the actual application of recycle water nitritation, it has not been fully examined whether or not additional volume would be required in an existing plant. In this paper, the addition of recycle water nitritation to an existing plant was evaluated based on a volume analysis and estimation of final effluent quality. It was expected that using the reserve volume of the aeration tank in existing plants, recycle water nitritation could be applied to a plant without any enlargement. With the addition of recycle water nitritation, it was estimated that the final effluent quality would be improved and stabilized, especially in the winter season.


2012 ◽  
Vol 10 (3) ◽  
pp. 380-389 ◽  
Author(s):  
Hui-Wen A. Cheng ◽  
Frances E. Lucy ◽  
Michael A. Broaders ◽  
Sergey E. Mastitsky ◽  
Chien-Hsien Chen ◽  
...  

Municipal wastewater treatment plants play a crucial role in reducing the microbial and pathogen load of human wastes before the end-products are discharged to surface waters (final effluent) or land spread (biosolids). This study investigated the occurrence frequency of noroviruses, Enterococcus faecalis and Enterococcus faecium in influent, final effluent and biosolids from four secondary wastewater treatment plants in northwestern Ireland (plants A–D) and observed the seasonal and spatial variation of the plant treatment efficiencies in the pathogen removals. It was noted that norovirus genogroup II was more resistant to the treatment processes than the norovirus genogroup I and other active viral particles, especially those in the discharge effluents. The percolating biofilm system at plant D resulted in better effluent quality than in the extended aerated activated sludge systems (plants A and B); primary biosolids produced at plant D may pose a higher health risk to the locals. The spread of norovirus genogroup II into the environment, irrespective of the wastewater treatment process, coincides with its national clinical predominance over norovirus genogroup I. This study provides important evidence that municipal wastewater treatment plants not only achieve pathogen removal but can also be the source of environmental pathogen contamination.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lisa M. Erdle ◽  
Dorsa Nouri Parto ◽  
David Sweetnam ◽  
Chelsea M. Rochman

Washing clothing is a known pathway for microfibers to reach the environment. Previous research has investigated microfiber capture close to the source (i.e., the washing machine), and demonstrated washing machine filters as a potential mitigation strategy. Widespread deployment into homes may be an effective solution to prevent microfiber emissions. Here, we investigated the effectiveness of washing machine filters at the level of a community. We installed filters in 97 homes in a small town, representing approximately 10% of households connected to the municipal wastewater treatment plant (WWTP). We evaluated treated final effluent and found a significant reduction in microfibers after filter installation. Furthermore, lint samples from filters revealed an average weekly lint capture of 6.4 g, equivalent to 179,200–2,707,200 microfibers. This research shows that microfiber filters on washing machines are effective at scale, and this result can help inform policy decisions to reduce microfiber emissions from laundering textiles.


Sign in / Sign up

Export Citation Format

Share Document