Pilot scale studies on nitritation-anammox process for mainstream wastewater at low temperature

2015 ◽  
Vol 73 (4) ◽  
pp. 761-768 ◽  
Author(s):  
Karol Trojanowicz ◽  
Elzbieta Plaza ◽  
Jozef Trela

Process of partial nitritation-anammox for mainstream wastewater at low temperature was run in a pilot scale moving bed biofilm reactor (MBBR) system for about 300 days. The biofilm history in the reactor was about 3 years of growth at low temperature (down to 10 °C). The goal of the studies presented in this paper was to achieve effective partial nitritation-anammox process. Influence of nitrogen loading rate, hydraulic retention time, aeration strategy (continuous versus intermittent) and sludge recirculation (integrated fixed-film activated sludge (IFAS) mode) on deammonification process' efficiency and microbial activity in the examined system was tested. It was found that the sole intermittent aeration strategy is not a sufficient method for successful suppression of nitrite oxidizing bacteria in MBBR. The best performance of the process was achieved in IFAS mode. The highest recorded capacity of ammonia oxidizing bacteria and anammox bacteria in biofilm was 1.4 gN/m2d and 0.5 gN/m2d, respectively, reaching 51% in nitrogen removal efficiency.

2017 ◽  
Vol 77 (6) ◽  
pp. 1483-1492 ◽  
Author(s):  
Yue-mei Han ◽  
Feng-xia Liu ◽  
Xiao-fei Xu ◽  
Zhuo Yan ◽  
Zhi-jun Liu

Abstract This study developed a partial nitrification (PN) and anaerobic ammonia oxidation (Anammox) process for treating high-ammonia wastewater using an innovative biofilm system in which ammonia oxidizing bacteria grew on fluidized Kaldnes (K1) carriers and Anammox bacteria grew on fixed acryl resin carriers. The airlift loop biofilm reactor (ALBR) was stably operated for more than 4 months under the following conditions: 35 ± 2 °C, pH 7.5–8.0 and dissolved oxygen (DO) of 0.5–3.5 mg/L. The results showed that the total nitrogen removal efficiency reached a maximum of 75% and the total nitrogen removal loading rate was above 0.4 kg/(d·m3). DO was the most efficient control parameter in the mixed biofilm system, and values below 1.5 mg/L were observed in the riser zone for the PN reaction, while values below 0.8 mg/L were observed in the downer zone for the Anammox reaction. Scanning electron microscopy and Fluorescence In Situ Hybridization images showed that most of the nitrifying bacteria were distributed on the K1 carriers and most of the Anammox bacteria were distributed within the acryl resin carriers. Therefore, the results indicate that the proposed combined biofilm system is easy to operate and efficient for the treatment of high-ammonia wastewater.


2017 ◽  
Vol 76 (1) ◽  
pp. 79-86 ◽  
Author(s):  
A. Val del Río ◽  
A. Stachurski ◽  
R. Méndez ◽  
J. L. Campos ◽  
J. Surmacz-Górska ◽  
...  

The effects of orange azo dye over ammonia oxidizing bacteria (AOB) and anammox bacteria activities were tested. Performed batch tests indicated that concentrations lower than 650 mgorange/L stimulated AOB activity, while anammox bacteria activity was inhibited at concentrations higher than 25 mgorange/L. Long-term performance of a continuous stirred tank reactor (CSTR) for the partial nitritation and a sequencing batch reactor (SBR) for the anammox process was tested in the presence of 50 mgorange/L. In the case of the partial nitritation process, both the biomass concentration and the specific AOB activity increased after 50 days of orange azo dye addition. Regarding the anammox process, specific activity decreased down to 58% after 12 days of operation with continuous feeding of 50 mgorange/L. However, the anammox activity was completely recovered only 54 days after stopping the dye addition in the feeding. Once the biomass was saturated the azo dye adsorption onto the biomass was insignificant in the CSTR for the partial nitritation process fed with 50 mgorange/L. However, in the SBR the absorption was determined as 6.4 mgorange/g volatile suspended solids. No biological decolorization was observed in both processes.


2018 ◽  
Author(s):  
Michele Laureni ◽  
David G. Weissbrodt ◽  
Kris Villez ◽  
Orlane Robin ◽  
Nadieh de Jonge ◽  
...  

AbstractThe control of nitrite-oxidizing bacteria (NOB) challenges the implementation of partial nitritation and anammox (PN/A) processes under mainstream conditions. The aim of the present study was to understand how operating conditions impact microbial competition and the control of NOB in hybrid PN/A systems, where biofilm and flocs coexist. A hybrid PN/A moving-bed biofilm reactor (MBBR; also referred to as integrated fixed film activated sludge or IFAS) was operated at 15 °C on aerobically pre-treated municipal wastewater (23 mgNH4-N·L−1). Ammonium-oxidizing bacteria (AOB) and NOB were enriched primarily in the flocs, and anammox bacteria (AMX) in the biofilm. After decreasing the dissolved oxygen concentration (DO) from 1.2 to 0.17 mgO2·L−1 - with all other operating conditions unchanged - washout of NOB from the flocs was observed. The activity of the minor NOB fraction remaining in the biofilm was suppressed at low DO. As a result, low effluent NO3− concentrations (0.5 mgN·L−1) were consistently achieved at aerobic nitrogen removal rates (80 mgN·L−1·d−1) comparable to those of conventional treatment plants. A simple dynamic mathematical model, assuming perfect biomass segregation with AOB and NOB in the flocs and AMX in the biofilm, was able to qualitatively reproduce the selective washout of NOB from the flocs in response to the decrease in DO-setpoint. Similarly, numerical simulations indicated that flocs removal is an effective operational strategy to achieve the selective washout of NOB. The direct competition for NO2− between NOB and AMX - the latter retained in the biofilm and acting as a “NO2-sink” - was identified by the model as key mechanism leading to a difference in the actual growth rates of AOB and NOB (i.e., μNOB < μAOB in flocs) and allowing for the selective NOB washout. Experimental results and model predictions demonstrate the increased operational flexibility, in terms of variables that can be easily controlled by operators, offered by hybrid systems as compared to solely biofilm systems for the control of NOB in mainstream PN/A applications.HighlightsHybrid PN/A systems provide increased operational flexibility for NOB controlAOB and NOB enrich primarily in the flocs, and AMX in the biofilm (“NO2-sink”)AMX use NO2− allowing to differentiate AOB and NOB growth ratesA decrease in DO or an increase in floc removal leads to selective NOB washout from flocsThe activity of the minor NOB fraction in the biofilm is suppressed at limiting DO


2016 ◽  
Vol 75 (5) ◽  
pp. 1007-1013 ◽  
Author(s):  
A. Pedrouso ◽  
A. Val del Río ◽  
J. L. Campos ◽  
R. Méndez ◽  
A. Mosquera-Corral

The main bottleneck to maintain the long-term stability of the partial nitritation-anammox processes, especially those operated at low temperatures and nitrogen concentrations, is the undesirable development of nitrite oxidizing bacteria (NOB). When this occurs, the punctual addition of compounds with the capacity to specifically inhibit NOB without affecting the process efficiency might be of interest. Sodium azide (NaN3) is an already known NOB inhibitor which at low concentrations does not significantly affect the ammonia oxidizing bacteria (AOB) activity. However, studies about its influence on anammox bacteria are unavailable. For this reason, the objective of the present study was to evaluate the effect of NaN3 on the anammox activity. Three different types of anammox biomass were used: granular biomass comprising AOB and anammox bacteria (G1), anammox enriched granules (G2) and previous anammox granules disaggregated (F1). No inhibitory effect of NaN3 was measured on G1 sludge. However, the anammox activity decreased in the case of G2 and F1. Granular biomass activity was less affected (IC50 90 mg/L, G2) than flocculent one (IC50 5 mg/L, F1). Summing up, not only does the granular structure protect the anammox bacteria from the NaN3 inhibitory effect, but also the AOB act as a barrier decreasing the inhibition.


Entecho ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 1-5
Author(s):  
Vojtěch Kouba ◽  
Jan Bartáček

Proces částečná nitritace-anammox odstraňuje amoniakální dusík z odpadních vod s polovičními náklady na aeraci, až o 80 % nižší produkcí přebytečného kalu a bez spotřeby organického substrátu. Jde o zavedený proces pro odstraňování dusíku z kalových vod z anaerobní fermentace, a podobně koncentrovaných a teplých odpadních vod. Na tyto vody se částečná nitritace-anammox aplikuje již déle než deset let, a to např. pod názvy ANAMMOX®, ANITA™ Mox, DEMON®, nebo TERRAMOX®. Optimalizované provozy těchto technologií dusík běžně odstraňují při zatížení 0,5–2,3 kg∙m–3∙d–1 (30–35 °C). Současnou výzvou pro výzkum je implementace částečné nitritace-anammox do hlavního proudu studené splaškové odpadní vody, přičemž konkrétními problémy jsou (i) potlačení nežádoucích nitratačních mikroorganismů (NOB) a (ii) adaptace mikroorganismů anammox na nízké teploty. Náš výzkum jsme začali s jednostupňovým procesem, a poté nitritaci a anammox rozdělili do dvou reaktorů. Prezentujeme strategii, která v laboratorním měřítku NOB účinně potlačila i při 12 °C a dále i v pilotním měřítku při 13–30 °C. Dále ukazujeme, že anammox je možné na nízké teploty adaptovat studenými šoky. Tyto výsledky umožní rozšířit úsporné odstraňování dusíku i do hlavního proudu splaškové odpadní vody na ČOV. English: Partial nitritation-anammox (PN/A) process removes nitrogen from wastewater with 50% reduction of aeration costs, 80% less excess sludge and no consumption of organic carbon. PN/A is an established process for the removal of nitrogen from reject water from anaerobic digestion and other similarly warm and concentrated streams. On such wastewater, PN/A has been applied in full scale for over 10 years under names such as ANAMMOX®, ANITA™ Mox, DEMON® or TERRAMOX®, whose optimized installations consistently achieve nitrogen removal loading rates of 0,5–2,3 kg∙m–3∙d–1. The current challenge for research is to implement PN/A into the main stream of cold municipal wastewater, the specific challenges being (i) suppression of undesirable nitrite oxidizing bacteria (NOB) and (ii) adaptation of anammox microorganisms to low temperatures. Our initial experiences with one-stage PN/A in the main stream led us to the separation of PN/A in two subsequent reactors. Subsequently, we developed a strategy for NOB suppression in partial nitritation even under 12 °C, which we then successfully tested in the pilot scale. Furthermore, we found that anammox can be adapted to low temperatures using cold shocks. In sum, these results will enable extending the savings for nitrogen removal into the main stream of wastewater at WWTP.


2007 ◽  
Vol 2 (1) ◽  
Author(s):  
B. Szatkowska ◽  
E. Plaza ◽  
J. Trela ◽  
B. Hultman ◽  
J. Bosander

Nowadays, as the effluent water regulations become more stringent, there is a need to treat wastewater in the most efficient manner and according to sustainability principles. One of the possibilities to meet this challenge is treatment of side streams, which are usually returned to the main influent of Wastewater Treatment Plants (WWTP) increasing the total load. Following processes occurring in natural ecosystems a new biological technology - combination of partial nitritation and Anammox processes - for treatment of nitrogen-rich supernatant coming from digested sludge dewatering has been developed. The first stage of the process is an oxidation of half of the ammonium to nitrite (partial nitritation process). The following stage - Anammox process - is an anaerobic oxidation of ammonium and nitrite nitrogen to dinitrogen gas. The process has been successfully tested in a technical-scale pilot plant with a continuous supply of supernatant at Himmerfjärden WWTP. Kaldnes rings were provided for biofilm growth. Almost two-year experiences in operation of the two-stage process have been presented in this paper. The results showed that a proper adjustment of dissolved oxygen (DO) concentration in the bulk liquid and a pH value drop in the partial nitritation reactor is essential to obtain the ammonium-to-nitrite ratio (NAR) in the effluent close to 1.3 as required for the Anammox process. It took four months to recover the Anammox bacteria activity after NO2-N inhibition.


Sign in / Sign up

Export Citation Format

Share Document