scholarly journals Nitrogen removal via a single-stage PN–Anammox process in a novel combined biofilm reactor

2017 ◽  
Vol 77 (6) ◽  
pp. 1483-1492 ◽  
Author(s):  
Yue-mei Han ◽  
Feng-xia Liu ◽  
Xiao-fei Xu ◽  
Zhuo Yan ◽  
Zhi-jun Liu

Abstract This study developed a partial nitrification (PN) and anaerobic ammonia oxidation (Anammox) process for treating high-ammonia wastewater using an innovative biofilm system in which ammonia oxidizing bacteria grew on fluidized Kaldnes (K1) carriers and Anammox bacteria grew on fixed acryl resin carriers. The airlift loop biofilm reactor (ALBR) was stably operated for more than 4 months under the following conditions: 35 ± 2 °C, pH 7.5–8.0 and dissolved oxygen (DO) of 0.5–3.5 mg/L. The results showed that the total nitrogen removal efficiency reached a maximum of 75% and the total nitrogen removal loading rate was above 0.4 kg/(d·m3). DO was the most efficient control parameter in the mixed biofilm system, and values below 1.5 mg/L were observed in the riser zone for the PN reaction, while values below 0.8 mg/L were observed in the downer zone for the Anammox reaction. Scanning electron microscopy and Fluorescence In Situ Hybridization images showed that most of the nitrifying bacteria were distributed on the K1 carriers and most of the Anammox bacteria were distributed within the acryl resin carriers. Therefore, the results indicate that the proposed combined biofilm system is easy to operate and efficient for the treatment of high-ammonia wastewater.

2017 ◽  
Vol 76 (12) ◽  
pp. 3468-3477 ◽  
Author(s):  
Weixing Mi ◽  
Jianqiang Zhao ◽  
Xiaoqian Ding ◽  
Guanghuan Ge ◽  
Rixiang Zhao

Abstract To investigate the characteristics of anaerobic ammonia oxidation for treating low-ammonium wastewater, a continuous-flow completely autotrophic nitrogen removal over nitrite (CANON) biofilm reactor was studied. At a temperature of 32 ± 1 °C and a pH between 7.5 and 8.2, two operational experiments were performed: the first one fixed the hydraulic retention time (HRT) at 10 h and gradually reduced the influent ammonium concentrations from 210 to 50 mg L−1; the second one fixed the influent ammonium concentration at 30 mg L−1 and gradually decreased the HRT from 10 to 3 h. The results revealed that the total nitrogen removal efficiency exceeded 80%, with a corresponding total nitrogen removal rate of 0.26 ± 0.01 kg N m−3 d−1 at the final low ammonium concentration of 30 mg L−1. Small amounts of nitrous oxide (N2O) up to 0.015 ± 0.004 kg m−3 d−1 at the ammonium concentration of 210 mg L−1 were produced in the CANON process and decreased with the decrease in the influent ammonium loads. High-throughput pyrosequencing analysis indicated that the dominant functional bacteria ‘Candidatus Kuenenia’ under high influent ammonium levels were gradually succeeded by Armatimonadetes_gp5 under low influent ammonium levels.


2021 ◽  
pp. 100817
Author(s):  
Withanage Buddhima Sharmane Siriweera ◽  
Lee Yun-Je ◽  
Kobayashi Masumi ◽  
Chettiyappan Visvanathan

2021 ◽  
Author(s):  
Sadaf mehrabi ◽  
Dwight Houweling ◽  
Martha Dagnew

Abstract High energy costs, organic carbon availability, and space limitation are some of the barriers faced by wastewater treatment processes. This research investigates the impact of membrane aeration mode, scouring intensity, and loading rate in a single-stage total nitrogen removal process in a membrane aerated biofilm reactor (MABR). Under ammonia loading of 2.7 g N/m2.d, continuous process aeration led to 1.7 g NH4-N/m2.d and 0.8 g TN/m2.d removal, respectively. Conversely, intermittent (5/12 min on/off) aeration resulted in 35% less ammonia removal but 34% higher total nitrogen (TN) removal. The MABR under ammonia load of 1.6 g N/m2.d showed an enhanced effluent quality with an average of 2.5 mg/L effluent ammonia concentration. This finding highlights the nitrification potential of a flow-through MABR as a standalone treatment step without any downstream process. Also, slough-off, a common issue in the biofilm process and was hypothesized to reduce the removal efficiency, showed increased ammonia removal rates by 20%. The microbial analysis indicated the dominant AOB and NOB species as Nitrosomonas spp. and Nitrospira spp, respectively. Moreover, the relative abundance of denitrifying bacteria (40.5%) were found twice in intermittently-aerated MABR compared to the continuously-aerated one (20.5%). However, NOB and denitrifying bacteria relative abundances were comparable where continuous air was supplied.


2015 ◽  
Vol 10 (1) ◽  
pp. 172-177 ◽  
Author(s):  
Yu. A. Nikolaev ◽  
M. N. Kozlov ◽  
M. V. Kevbrina ◽  
A. G. Dorofeev ◽  
V. G. Aseeva ◽  
...  

The paper presents results of study of anoxic ammonia oxidation at low temperature conducted at JSC Mosvodokanal, Moscow, Russia. The study was carried out in two reactors, 5 l each, operated at the temperature of 5–10 °С. Both reactors were inoculated with the soil, collected from waste water sludge landfill, that presumably, contained low-temperature adapted nitrifying bacteria. Reactor No. 1 contained nitrifying bacteria only. Reactor No. 2 was further inoculated by anammox bacteria. Filtrate from digested sludge belt thickeners was added into the reactors to achieve a final N-NH4 concentration of 70–95 mg/l. The reactors were operated as sequencing batch reactors. After 90 days of incubation maximal nitrification rate in reactor No. 1 was 1.4 mg N-NH4/g VSS*h, and in reactor No. 2–1.0 mg N-NH4/g VSS*h. Estimated doubling time of nitrifying bacteria was 45 days. Total mineral nitrogen removal in the 1st reactor was 20% (via process of heterotrophic denitrification), and in the 2nd – 60% (via both the processes of heterotrophic and autotrophic nitrate reduction). Through the process of autotrophic denitrification (anammox), two times as much nitrogen was removed, compared to the heterotrophic denitrification process. Anammox process rate was 0.4 mg N-NH4/g VSS*h.


Author(s):  
Qing Cai ◽  
Qiang He ◽  
Sheng Zhang ◽  
Jiajia Ding

Abstract Based on the simplified activated sludge model No. 1 (ASM1), a 1D biofilm model containing autotrophic microorganisms and heterotrophic microorganisms was developed to describe the microbial population dynamics and reactor dynamics of CANON SBR. After sensitivity analysis and calibration for parameters, the simulation results of NH4+-N concentration and NO2−-N concentration were consistent with the measured results, while the simulated NO3−-N concentration was slightly lower than the measured. The simulation results showed that the soluble microbial products had an extremely low concentration. The aerobic ammonia oxidation bacteria and anaerobic ammonia oxidation bacteria were the dominant microbial populations of the CANON system, while nitrite oxidization bacteria and heterotrophic bacteria were eliminated completely. The optimal ratio of air aeration load to influent NH4+-N load was about 0.18 L air/mgN. The operation condition of the reactor was optimized according to the simulation results, and the total nitrogen removal rate and the total nitrogen removal efficiency increased from 0.312 ± 0.015 to 0.485 ± 0.013 kg N/m3/d and from 71.2 ± 4.3 to 85.7 ± 1.4%, respectively.


2015 ◽  
Vol 73 (4) ◽  
pp. 761-768 ◽  
Author(s):  
Karol Trojanowicz ◽  
Elzbieta Plaza ◽  
Jozef Trela

Process of partial nitritation-anammox for mainstream wastewater at low temperature was run in a pilot scale moving bed biofilm reactor (MBBR) system for about 300 days. The biofilm history in the reactor was about 3 years of growth at low temperature (down to 10 °C). The goal of the studies presented in this paper was to achieve effective partial nitritation-anammox process. Influence of nitrogen loading rate, hydraulic retention time, aeration strategy (continuous versus intermittent) and sludge recirculation (integrated fixed-film activated sludge (IFAS) mode) on deammonification process' efficiency and microbial activity in the examined system was tested. It was found that the sole intermittent aeration strategy is not a sufficient method for successful suppression of nitrite oxidizing bacteria in MBBR. The best performance of the process was achieved in IFAS mode. The highest recorded capacity of ammonia oxidizing bacteria and anammox bacteria in biofilm was 1.4 gN/m2d and 0.5 gN/m2d, respectively, reaching 51% in nitrogen removal efficiency.


2014 ◽  
Vol 955-959 ◽  
pp. 2318-2321
Author(s):  
Dong Yuan

The objective of this work was to evaluate the performances of A lab-scale innovative sequencing batch biofilm reactor (SBBR) to treat domestic wastewater,in which a acryl cylinder (height 200 mm, diameter 70 mm) was equipped and many fiber threads were attached to the surface of the cylinder as the bacteria carrier. No time and volume for settling was required in this system. After one year’s operation, each parameter achieved the wastewater discharged criterion in 2 cycles (4 h). It was found that COD removal efficiency was up to 90% in 3 h, and ammonium nitrogen concentration approached the least value; total nitrogen removal efficiency reached 55%-71%. In this SBBR system simultaneous nitrification and denitrification was completed at the end of 2 cycles.


2020 ◽  
Vol 42 (7) ◽  
pp. 339-348
Author(s):  
Sumin Lee ◽  
Daewon Pak

Objectives:In this study, the treatment potential of ammonia in wastewater generated by S company odor removal process was tested by using electrochemical reactor with RuO2/Ti anode and TiO2 nanotube cathode. The effect of chlorine ion concentration and current density on ammonia oxidation were investigated by comparing the treatment efficiencies.Methods:380 mL of wastewater was electrolyzed for 3 h using 4 anodes and 5 cathodes and pH, NH3-N, NO3--N, and TN were measured and analyzed every 30 minutes.Results and Discussion:As the addition of chlorine ion increases, about 1,700 mg/L of ammonia in the wastewater was found to increase in oxidation reaction rate due to an increase in chlorine based oxidizing agent. An increase in chlorine based oxidizing agent leads to an increase in indirect oxidation. As a result, total nitrogen removal was increased. Ammonia oxidation rate was increased as the current density increased. Nitrate, ammonia oxidation byproduct, was accumulated at a current density from 20 to 40 mA/cm2. At higher than 50 mA/cm2, nitrate was accumulated for a while and then decreased. Total nitrogen removal rate increased as the current density increased. During electrochemical oxidation of ammonia to nitrate, hydroxyl ions were consumed by the reaction. The hydroxyl ion consumed during ammonia oxidation was less than that produced from nitrate reduction.Conclusions:Thus, ammonia in actual wastewater was completely removed using RuO2/Ti anode and TiO2 nanotube cathode and the possibility of reducing nitrate was confirmed. We confirmed the applicability of the two electrodes to the real industry.


Sign in / Sign up

Export Citation Format

Share Document