Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants

2017 ◽  
Vol 75 (7) ◽  
pp. 1523-1528 ◽  
Author(s):  
Hongfeng Zhang ◽  
Xiu He ◽  
Weiwei Zhao ◽  
Yu Peng ◽  
Donglan Sun ◽  
...  

Fe3O4/TiO2 magnetic mesoporous composites were synthesized through a sol-gel method with tetra-n-butyl titanate as precursor and surfactant P123 as template. The as-prepared Fe3O4/TiO2 composites were characterized by X-ray diffraction, diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherm and pore size distribution. The as-synthesized products were applied as photocatalysis for the degradation of Acid Black ATT and tannery wastewater under UV lamp irradiation. Fe3O4/TiO2-8 composites containing Fe3O4 of 8 wt% were selected as model catalysts. The optimal catalyst dosage was 3 g/L in this photocalytic system. The magnetic Fe3O4/TiO2 composites possessed good photocatalytic stability and durability. This approach may provide a platform to prepare a magnetic composite to optimize the catalytic ability.

2018 ◽  
Vol 876 ◽  
pp. 15-19
Author(s):  
Jian Wen Shi ◽  
Dan Dan Ma ◽  
Ya Jun Zou

The meso-porous TiO2 and Sm-doped meso-porous TiO2 were synthesized by a sol-gel method. Polyethylene glycol, with different added content, was added as a structure-directing agent. The prepared meso-porous TiO2 was characterized by nitrogen adsorption, X-ray diffraction and ultraviolet-visible diffuse reflectance spectroscopy, and the photocatalytic performance was evaluated by the decomposition of methyl orange. The results revealed that PEG plays a key role in creating porous structure during the heat-treatment. The photocatalytic performance of TiO2 is improved by adding proper content PEG, and Sm-doping can further promote the photocatalytic performance.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Manuel Sánchez-Cantú ◽  
Clara Barcelos-Santiago ◽  
Claudia M. Gomez ◽  
Esthela Ramos-Ramírez ◽  
Ma. de Lourdes Ruiz Peralta ◽  
...  

Three hydrocalumite-like compounds in a Ca/Al ratio of 2 containing nitrate and acetate anions in the interlaminar region were prepared by a simple, economic, and environmentally friendly method. The solids were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, nitrogen adsorption-desorption at −196°C, scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and UV-Vis Diffuse Reflectance Spectroscopy (DRS). The catalytic activity of the calcined solids at 700°C was tested in the photodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) where 57% degradation of 2,4-D (40 ppm) and a mineralization percentage of 60% were accomplished within 150 minutes. The photocatalytic properties were attributed to mayenite hydration, since the oxide ions in the cages are capable of reacting with water to form hydroxide anions capable of breaking down the 2,4-D molecules.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1771 ◽  
Author(s):  
Stefan Neatu ◽  
Mihaela M. Trandafir ◽  
Adelina Stănoiu ◽  
Ovidiu G. Florea ◽  
Cristian E. Simion ◽  
...  

This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium–manganese mixed oxides, which were prepared by three different methods (coprecipitation, impregnation and citrate-based sol-gel method) followed by calcination at 500 °C. The physicochemical properties of the synthesized materials were investigated by various characterization techniques, namely: nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and H2–temperature programmed reduction (TPR). This experimental study demonstrated that the role of the catalytic surface is much more important than the bulk one. Indeed, the incipient impregnation of CeO2–MnOx catalyst, supported on an optimized amount of 4 wt.% La2O3–Al2O3, provided the best results of the catalytic combustion of methane on our catalytic micro-convertors. This is mainly due to: (i) the highest pore size dimensions according to the Brunauer-Emmett-Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H2–TPR and therefore more reactive oxygen species.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pham Dinh Du ◽  
Nguyen Trung Hieu ◽  
Tran Vinh Thien

Zeolitic imidazolate framework-8 (ZIF-8) is synthesized quickly at room temperature in methanol with the support of ultrasound. Porous ZnO is also prepared via the thermal treatment of ZIF-8. The photocatalytic activities of the obtained materials are demonstrated via methylene blue (MB) decomposition under UV radiation. The obtained materials are characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, UV-Vis diffuse reflectance spectra (DR-UV-Vis), and photoluminescence spectra. The results indicate that ZIF-8 and the materials obtained from ZIF-8 by heating in the air have photocatalytic activity under UV irradiation. The ZnO sample obtained by ZIF-8 calcination at 660°C for 5 h has the highest photocatalytic activity. However, the MB degradation photocatalytic efficiency of the ZnO samples is even lower than that of the ZIF-8 samples, indicating that ZIF-8 is an effective photocatalyst in the treatment of environmental pollution.


2014 ◽  
Vol 69 (2) ◽  
pp. 224-230 ◽  
Author(s):  
Nina Danchova ◽  
Stoyan Gutzov

Different sol-gel strategies based on functionalization of ZrO2:Eu microparticles with 1,10- phenanthroline (phen) and incorporation of colloidal Eu(phen)2(NO3)3 into zirconia have been used to obtain hybrid sol-gel composites with controlled optical properties. The process leads to materials with quantum yields of about 48% monitoring the 615 nm emission line at 350 nm excitation. Excitation/ luminescence spectroscopy, diffuse reflectance spectroscopy and X-ray diffraction have been used to characterize the hybrid zirconia composites.


2009 ◽  
Vol 79-82 ◽  
pp. 525-528 ◽  
Author(s):  
Ke Xun Li ◽  
Hong Liang Li ◽  
Jun Hua Zhao ◽  
Ying Chun Zhu ◽  
Xiu Song Zhao

Carbon/TiO2 composites were prepared via the reaction under Autogenic Pressure at Elevated Temperature (RAPET) using alkoxides as precursor, and then porous TiO2 hollow spheres were derived after removing the carbon ingredient by calcination at 600°C. The influence of surfactant additives, including the addition ratio and the nature of the surfactants, on the morphology and the structures of the Carbon/TiO2 composites and the derived TiO2 were also studied with scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectrophotoscopy (DRS) and nitrogen adsorption-desorption measurements. The results revealed that the morphology of the products turned to spherical and then fusiform and the structures turned from hollow to solid with the increasing of surfactant additive. The BET surface area of the hollow TiO2 was modified from 12m2/g to 57m2/g after calcinations. The XRD investigation indicates that the phases of the TiO2 in both the carbon/TiO2 composites and the derived TiO2 hollow spheres are anatase.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7741
Author(s):  
Hong-Tham Nguyen Thi ◽  
Kim-Ngan Tran Thi ◽  
Ngoc Bich Hoang ◽  
Bich Thuy Tran ◽  
Trung Sy Do ◽  
...  

Samples of the bimetallic-based NH2-MIL-125(Ti) at a ratio of Mn+/Ti4+ is 0.15 (Mn+: Ni2+, Co2+ and Fe3+) were first synthesized using the solvothermal method. Their fundamental properties were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectra, scanning electron microscopy (SEM), N2 adsorption–desorption measurements, and UV–Vis diffuse reflectance spectroscopy (UV-Vis DRS). The as-acquired materials were used as high-efficiency heterogeneous photocatalysts to remove Rhodamine B (RhB) dye under visible light. The results verified that 82.4% of the RhB (3 × 10−5 M) was degraded within 120 min by 15% Fe/Ti−MOFs. Furthermore, in the purpose of degrading Rhodamine B (RhB), the rate constant for the 15% Fe/Ti-MOFs was found to be 2.6 times as fast as that of NH2-MIL-125(Ti). Moreover, the 15% Fe/Ti-MOFs photocatalysts remained stable after three consecutive cycles. The trapping test demonstrated that the major active species in the degradation of the RhB process were hydroxyl radicals (HO∙) and holes (h+).


2016 ◽  
Vol 6 (21) ◽  
pp. 7902-7912 ◽  
Author(s):  
Gheorghiţa Mitran ◽  
Octavian Dumitru Pavel ◽  
Daniel G. Mieritz ◽  
Dong-Kyun Seo ◽  
Mihaela Florea

Alumina-supported molybdena–ceria catalysts were prepared by a sol–gel method and characterized by X-ray diffraction, N2 sorptometry, UV-vis-NIR diffuse reflectance spectroscopy, SEM and TEM.


2013 ◽  
Vol 785-786 ◽  
pp. 537-541
Author(s):  
Xiao Dong Li

The nanosized channels of SBA-15 molecular sieves were used as template and arsenano-III (ASA-III) was trapped inside the SBA-15 molecular sieves by means of liquid grafting method. The prepared nanocomposite materials were characterized by the powder X-ray diffraction, low temperature nitrogen adsorption-desorption and solid diffuse reflectance absorption spectra. The powder X-ray diffraction indicated the structure of the (SBA-15)-(ASA-III) still remains two-dimensional hexagonal mesostructrure. The low temperature nitrogen adsorption-desorption research showed that the ASA-III was present on the inner surface and partially occupied the channels of the molecular sieve. The UV-Vis solid state diffuse reflectance absorption spectra of the prepared composite materials showed the steroconfinmment effect of the host SBA-15 channels on the guest ASA-III and the guest was in the channels of the SBA-15 host. Luminous spectra showed that the prepared (SBA-15)-(ASA-III) nanocomposite materials have the investigating optical properties.


Sign in / Sign up

Export Citation Format

Share Document