Life cycle assessment of sludge management with phosphorus utilisation and improved hygienisation in Sweden

2017 ◽  
Vol 75 (9) ◽  
pp. 2013-2024 ◽  
Author(s):  
M. Svanström ◽  
S. Heimersson ◽  
G. Peters ◽  
R. Harder ◽  
D. I'Ons ◽  
...  

To provide input to sewage sludge management strategies that address expected new regulations in terms of hygienisation and phosphorus recovery in Sweden, an environmental life cycle assessment (LCA) was made. The LCA identified environmental hot spots for methods that may permit sludge or phosphorus from sludge to be applied on agricultural land. In particular, thermophilic digestion, pasteurisation, thermal hydrolysis, urea treatment and mono-incineration with phosphorus recovery were compared. In addition, a sludge management system involving drying of sludge before use in forestry was investigated. The results showed that some major impacts are related to large uncertainties, such as those related to emissions from sludge storage. It also showed that large gains can be achieved when products from the systems replace other products, in particular when biogas is used to replace natural gas in vehicles, but also when sludge is used in agriculture and forestry. In general, there are small differences between the sludge management methods. Retaining the sludge matrix to allow for its utilisation in agriculture may conflict with keeping emissions to air and water from the sludge matrix low. It is recommended that any sludge management option minimises emissions from sludge to air and water and that resources are recovered and used, in line with the principles of a circular economy.

2015 ◽  
Vol 21 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Robin Harder ◽  
Gregory M. Peters ◽  
Sverker Molander ◽  
Nicholas J. Ashbolt ◽  
Magdalena Svanström

2013 ◽  
Vol 31 (11) ◽  
pp. 1083-1101 ◽  
Author(s):  
Hiroko Yoshida ◽  
Thomas H Christensen ◽  
Charlotte Scheutz

2018 ◽  
Vol 174 ◽  
pp. 538-547 ◽  
Author(s):  
Hiroko Yoshida ◽  
Marieke ten Hoeve ◽  
Thomas H. Christensen ◽  
Sander Bruun ◽  
Lars S. Jensen ◽  
...  

2002 ◽  
Vol 46 (4-5) ◽  
pp. 435-440 ◽  
Author(s):  
E. Levlin ◽  
M. Löwén ◽  
K. Stark ◽  
B. Hultman

Expected requirements of phosphorus recovery, restrictions on sludge disposal on landfill, and difficulties in obtaining consensus on sludge use on agricultural land has led to several development works in Sweden to change sludge management methods. Especially sludge fractionation has gained interest including following steps to recover products and separate transfer of toxic substances into a small stream. Commercial systems are offered based on technology by Cambi/KREPRO and BioCon and other companies and many other methods are under development. Iron salts are widely used in Sweden as precipitation agents for phosphorus removal and this technology has some disadvantages for phosphorus recovery compared with the use of biological phosphorus removal. The amount of chemicals needed for a KREPRO or a BioCon system was calculated for a treatment plant which has an addition of iron salt resulting in 1,900 mole Fe per tonne DS. The result was compared with the chemical consumption of recovery systems installed at plants with lower use of iron for precipitation. The chemical consumption in equivalents per tonne DS was found to be 5,000 + 6,000 * (molar ratio iron to phosphorus).


2015 ◽  
Vol 1 (3) ◽  
pp. 195-214 ◽  
Author(s):  
M. Roffeis ◽  
B. Muys ◽  
J. Almeida ◽  
E. Mathijs ◽  
W.M.J. Achten ◽  
...  

The largest portion of a product’s environmental impacts and costs of manufacturing and use results from decisions taken in the conceptual design phase long before its market entry. To foster sustainable production patterns, applying life cycle assessment in the early product development stage is gaining importance. Following recent scientific studies on using dipteran fly species for waste management, this paper presents an assessment of two insect-based manure treatment systems. Considering the necessity of manure treatment in regions with concentrated animal operations, reducing excess manure volumes with the means of insects presents a potentially convenient method to combine waste reduction and nutrient recovery. An analytical comparison of rearing houseflies on fresh and pre-treated pig manure is reported with reference to agricultural land occupation, water and fossil depletion potential. Based on ex-ante modelled industrial scale rearing systems, the driving factors of performance and environmentally sensitive aspects of the rearing process have been assessed. Expressed per kg manure dry matter reduction, the estimated agricultural land occupation varied between 1.4 and 2.7 m2yr, fossil depletion potential ranged from 1.9 to 3.4 kgoil eq and the obtained water depletion potential was calculated from 36.4 to 65.6 m3. System improvement potential was identified for heating related energy usage and water consumption. The geographical context and the utility of the co-products, i.e. residue substrates and insect products, were determined as influential variables to the application potential of this novel manure treatment concept. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such a system and provide guidance for future research and development activities.


Sign in / Sign up

Export Citation Format

Share Document