scholarly journals Post-treatment of tannery wastewater using pilot scale horizontal subsurface flow constructed wetlands (polishing)

2017 ◽  
Vol 77 (4) ◽  
pp. 988-998 ◽  
Author(s):  
Tadesse Alemu ◽  
Andualem Mekonnen ◽  
Seyoum Leta

Abstract In the present study, a pilot scale horizontal subsurface flow constructed wetland (CW) system planted with Phragmites karka; longitudinal profile was studied. The wetland was fed with tannery wastewater, pretreated in a two-stage anaerobic digester followed by a sequence batch reactor. Samples from each CW were taken and analyzed using standard methods. The removal efficiency of the CW system in terms of biological oxygen demand (BOD), chemical oxygen demand (COD), Cr and total coliforms were 91.3%, 90%, 97.3% and 99%, respectively. The removal efficiency for TN, NO3− and NH4+-N were 77.7%, 66.3% and 67.7%, respectively. Similarly, the removal efficiency of SO42−, S2− and total suspended solids (TSS) were 71.8%, 88.7% and 81.2%, respectively. The concentration of COD, BOD, TN, NO3−N, NH4+-N, SO42 and S2− in the final treated effluent were 113.2 ± 52, 56 ± 18, 49.3 ± 13, 22.75 ± 20, 17.1 ± 6.75, 88 ± 120 and 0.4 ± 0.44 mg/L, respectively. Pollutants removal was decreased in the first 12 m and increased along the CW cells. P. karka development in the first cell of CW was poor, small in size and experiencing chlorosis, but clogging was higher in this area due to high organic matter settling, causing a partial surface flow. The performance of the pilot CW as a tertiary treatment showed that the effluent meets the permissible discharge standards.

2021 ◽  
Vol 9 ◽  
Author(s):  
Agegnehu Alemu ◽  
Nigus Gabbiye ◽  
Brook Lemma

Tannery wastewater is composed of a complex mixture of organic and inorganic components from various processes that can critically pollute the environment, especially water bodies if discharged without treatment. In this study, integrated vesicular basalt rock and local plant species were used to establish a horizontal subsurface flow constructed wetland system and to investigate the treatment efficiency of tannery wastewater. Four pilot units were vegetated with P. purpureum, T. domingensis, C. latifolius, and E. pyramidalis, and a fifth unit was left unvegetated (control). The constructed wetland units in horizontal subsurface flow systems were effective in removing total chromium (Cr), chemical oxygen demand (COD), and 5-day biological oxygen demand (BOD5) from the inflow tannery wastewater. The removal efficiency reached up to 99.38, 84.03, and 80.32% for total Cr, COD, and BOD5, respectively, in 6 days of hydraulic retention time (HRT). The removal efficiency of total suspended solid (TSS), total phosphorus (TP), and nitrate (NO3−) of the constructed wetland units reached a maximum of 70.59, 62.32, and 71.23%, respectively. This integrated system was effective for treating tannery wastewater, which is below the Ethiopian surface water standard discharge limit set to BOD5 (200 mg L−1), COD (500 mg L−1), total Cr (2 mg L−1), NO3− (20 mg L−1), TSS (50 mg L−1), and TP (10 mg L−1).


Author(s):  
R. Shruthi ◽  
G. P. Shivashankara

Abstract To find the effect of Hydraulic Retention Time (HRT) and seasons on the performance of horizontal subsurface flow constructed wetland (HSSF CW) in treating rural wastewater, a pilot scale unit 2.5 m × 0.4 m × 0.3 m size bed planted with a Typha latifolia and Phragmites australis was operated for a 12-month duration. During the study 2, 4, 6, 8, and 10 days of HRT were maintained in winter, summer, and rainy seasons. The removal efficiency obtained was ranges from 62.09 to 87.23% for Chemical Oxygen Demand, 69.58% to 93.32% for Biochemical Oxygen Demand5 (BOD), 31.55% to 59.89% for Ammonia Nitrogen (NH4-N), 15.18% to 52.90% for Total Kjeldahl Nitrogen (TKN), 21.02% to 50.21% for Phosphate Phosphorus (PO43− P), 19.82% to 48.23% for, Total phosphorus (TP), 74.93% to 93.10% for Faecal Coliform (FC) and 69.93% to 90.23% Total Coliform (TC). Overall, results showed that the performance of the unit was good. For statistical analysis two way ANOVA test followed by the Tukey test was used with a 95% level of significance. It was observed that the removal efficiency of the pollutants were increased with an increase in HRT. HRT of 6 days found as adequate for significant removal of organic matter (COD and BOD). Seasonal removal efficiencies followed the order of summer > rainy > winter for all the parameters, but the difference was not statistically significant.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 418 ◽  
Author(s):  
Pedro Cisterna-Osorio ◽  
Verónica Lazcano-Castro ◽  
Gisela Silva-Vasquez ◽  
Mauricio Llanos-Baeza ◽  
Ignacio Fuentes-Ortega

The objective of this work is to evaluate the impact of innovative modifications made to conventional effluent capture and discharge devices used in subsurface flow wetlands (SSFW). The main modifications that have been developed extend the influence of the capture and discharge device in such a way that the SSFW width and height are fully covered. This improved innovative device was applied and evaluated in two subsurface flow wetlands, one on a pilot scale and one on a real scale. To evaluate the impact of the innovative device with respect to the conventional one in the operational functioning of subsurface flow wetlands, the elimination of chemical oxygen demand (COD) was measured and compared. The results show that for the innovative device, the COD removal was 10% higher than for the conventional device, confirming the validity and effectiveness of the modifications implemented in the effluent capture and discharge devices used in SSFW.


2010 ◽  
Vol 37 (3) ◽  
pp. 496-501 ◽  
Author(s):  
K.N. Njau ◽  
M. Renalda

A horizontal subsurface flow constructed wetland (HSSFCW) was employed to remove tannins from the effluent of a tannins extracting company. Two HSSFCW cells with hydraulic retention time (HRT) of 9 d and packed with limestone were used. One cell without macrophytes was used as a control, while the second cell was planted with Phragmites mauritianus . Results indicated that HSSFCW was capable of treating tannin wastewater that has been seeded with primary facultative pond sludge. Tannins and chemical oxygen demand (COD) removal efficiency of 95.9% and 90.6% with outlet concentration of 27 mg/L and 86 mg/L, respectively, were obtained in the planted cell; while the tannins and COD removal efficiency of 91.1% and 89.5% with outlet concentration of 57 mg/L and 96 mg/L, respectively, were obtained in the control cell.


Author(s):  
Hamidi Aziz ◽  
Nur Puat ◽  
Motasem Alazaiza ◽  
Yung-Tse Hung

In this study, a sequential batch reactor (SBR) with different types of fibers was employed for the treatment of poultry slaughterhouse wastewater. Three types of fibers, namely, juite fiber (JF), bio-fringe fiber (BF), and siliconised conjugated polyester fiber (SCPF), were used. Four SBR experiments were conducted, using the fibers in different reactors, while the fourth reactor used a combination of these fibers. The treatment efficiency of the different reactors with and without fibers on biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia-nitrogen (NH3-N), phosphorus (P), nitrite (NO2), nitrate (NO3), total suspended solids (TSS), and oil-grease were evaluated. The removal efficiency for the reactors with fibers was higher than that of the reactor without fibers for all pollutants. The treated effluent had 40 mg/L BOD5 and 45 mg/L COD with an average removal efficiency of 96% and 93%, respectively, which meet the discharge limits stated in the Environmental Quality Act in Malaysia.


2020 ◽  
Vol 7 (2) ◽  
pp. 70-74
Author(s):  
Fidelis C. Nkeshita ◽  
A. A. Adekunle ◽  
R. B. Onaneye ◽  
O. Yusuf

Wastewater from abattoir sources in urban areas can adversely affect the environment and cause health problems. This research investigated the ability of a bamboo constructed wetland system (BCWS) using Bambusa vulgaris, to treat wastewater from abattoir by removing nutrients and organics. This study adopted pilot scale reactors with bed dimension of 1 m length x 1 m width x 1 m depth to simulate a horizontal sub-surface flow constructed wetland and planted with six strands of bamboo plants. Parameters analyzed include the nutrients (in the form of phosphate and nitrate) and the organics (in the form of Chemical oxygen demand, COD and Biochemical oxygen demand, BOD). The effluent analysis that were carried out within a 28-day retention period showed that there was a very good decrease in the nutrient pollutant parameters; phosphate (99.6 %), nitrate (98.5 %). The organics showed a lesser performance with a 39.3 % removal efficiency for COD and 49.9 % removal efficiency for BOD. Bamboo can be used in a BCWS for low cost green technology in urban areas and can be improved upon by increasing the number of bamboo shoot in order to have a larger root system.


Sign in / Sign up

Export Citation Format

Share Document