scholarly journals Removal of pollutants from abattoir wastewater using a pilot-scale bamboo constructed wetland system

2020 ◽  
Vol 7 (2) ◽  
pp. 70-74
Author(s):  
Fidelis C. Nkeshita ◽  
A. A. Adekunle ◽  
R. B. Onaneye ◽  
O. Yusuf

Wastewater from abattoir sources in urban areas can adversely affect the environment and cause health problems. This research investigated the ability of a bamboo constructed wetland system (BCWS) using Bambusa vulgaris, to treat wastewater from abattoir by removing nutrients and organics. This study adopted pilot scale reactors with bed dimension of 1 m length x 1 m width x 1 m depth to simulate a horizontal sub-surface flow constructed wetland and planted with six strands of bamboo plants. Parameters analyzed include the nutrients (in the form of phosphate and nitrate) and the organics (in the form of Chemical oxygen demand, COD and Biochemical oxygen demand, BOD). The effluent analysis that were carried out within a 28-day retention period showed that there was a very good decrease in the nutrient pollutant parameters; phosphate (99.6 %), nitrate (98.5 %). The organics showed a lesser performance with a 39.3 % removal efficiency for COD and 49.9 % removal efficiency for BOD. Bamboo can be used in a BCWS for low cost green technology in urban areas and can be improved upon by increasing the number of bamboo shoot in order to have a larger root system.

2017 ◽  
Vol 77 (4) ◽  
pp. 988-998 ◽  
Author(s):  
Tadesse Alemu ◽  
Andualem Mekonnen ◽  
Seyoum Leta

Abstract In the present study, a pilot scale horizontal subsurface flow constructed wetland (CW) system planted with Phragmites karka; longitudinal profile was studied. The wetland was fed with tannery wastewater, pretreated in a two-stage anaerobic digester followed by a sequence batch reactor. Samples from each CW were taken and analyzed using standard methods. The removal efficiency of the CW system in terms of biological oxygen demand (BOD), chemical oxygen demand (COD), Cr and total coliforms were 91.3%, 90%, 97.3% and 99%, respectively. The removal efficiency for TN, NO3− and NH4+-N were 77.7%, 66.3% and 67.7%, respectively. Similarly, the removal efficiency of SO42−, S2− and total suspended solids (TSS) were 71.8%, 88.7% and 81.2%, respectively. The concentration of COD, BOD, TN, NO3−N, NH4+-N, SO42 and S2− in the final treated effluent were 113.2 ± 52, 56 ± 18, 49.3 ± 13, 22.75 ± 20, 17.1 ± 6.75, 88 ± 120 and 0.4 ± 0.44 mg/L, respectively. Pollutants removal was decreased in the first 12 m and increased along the CW cells. P. karka development in the first cell of CW was poor, small in size and experiencing chlorosis, but clogging was higher in this area due to high organic matter settling, causing a partial surface flow. The performance of the pilot CW as a tertiary treatment showed that the effluent meets the permissible discharge standards.


2019 ◽  
Vol 80 (6) ◽  
pp. 1145-1154
Author(s):  
Agyemang Richard Osei ◽  
Yacouba Konate ◽  
Felix Kofi Abagale

Abstract Constructed wetland technology is an innovative engineering technique for faecal sludge (FS) management. The presence of emergent macrophytes enhances the important processes of evapotranspiration, sludge mineralisation, and contaminant reduction. Consequently, selecting a species that can withstand the difficult sludge contaminated conditions within a local context is vital. This study monitored the pollutant removal potentials and growth dynamics of Bambusa vulgaris and Cymbopogon nardus as promising macrophytes for the constructed wetland technology in the Sudano-Sahelian context. The experiment, at pilot scale, consisted of plastic reactors (27 litre) filled with filter media of sand and fine gravels at the base, and planted with the selected species. Pollutant removal efficiencies were evaluated based on differences between influent and effluent concentrations, and physiological growth parameters of plant height, number of leaves and number of plants were monitored monthly. Total annual sludge loading rate of 31.4 and 103.4 kg TS/(m2·yr) (TS: total solids) were determined for FS + wastewater (acclimatisation phase) and FS load respectively. Both species recorded appreciable pollutant removal efficiency >80% for the organic (chemical oxygen demand), nutrients (PO43_P and NH4-N) and solid (total suspended solids and total volatile solids) contents. The species thus demonstrated satisfactory performance of resistance for faecal polluted wetland conditions.


1995 ◽  
Vol 32 (3) ◽  
pp. 31-40 ◽  
Author(s):  
Yang Yang ◽  
Zhencheng Xu ◽  
Kangping Hu ◽  
Junsan Wang ◽  
Guizhi Wang

In this paper, three years study on a constructed wetland wastewater treatment system at Bainikeng, Shenzhen, is reviewed and summarized. The wetland system under study occupies an area of 8400m2, with a design flow of 3100 m3 per day. The study was conducted to understand removal efficiencies of constructed wetland systems for municipal wastewaters from small or medium scale towns in the sub-tropics. Such parameters as biological oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus in the influent and effluent of the wetland system are examined, and their removal rates are determined. It is shown that the system is very effective in removing organic pollutants and suspended solids and its removal efficiency is much similar to those of the constructed wetlands at Tennessee Valley Authority (TVA) (Choate et al., 1990) while better than those of conventional secondary biochemical treatments.


2017 ◽  
Vol 3 (5) ◽  
pp. 52
Author(s):  
Rengaraj Chithra Devi ◽  
Nirmaladevi D. Shrinithivihahshini ◽  
Rajendran Viji

Water is inevitable for our life. Due to the population growth, there is a tremendous pressure on the existing fresh water resources such as surface water and ground water. Increasing water demand and improper usage of potable water lead to scarcity of fresh water resources. Globally, treating grey water is a real constraint to minimize the problem of water scarcity. The continuous flow-based constructed wetland system for grey water treatment is a technique for reusing the domestic grey water and it is a low-cost method. The current study was aimed to evolve a suitable user-friendly treatment system for handling the household grey water. In the present study, grey water has been collected from the Bharathidasan University and it has been treated with biofiltration and rhizhodegradation techniques using continuous flow-based constructed wetland system. The system has been found as more effective for treating the Physico-chemical parameters such as suspended solids, pH, electrical conductivity, TS, TDS, DO, BOD, COD, TOC, CO3, HCO3, SO4, NO3, PO4, Ca, Mg, Na, K, total hardness, calcium hardness, chloride, and total alkalinity. The results reported the reduction in the biological oxygen demand (89%), chemical oxygen demand (81%), DO (95%), carbonate (100%), sodium (65%), and potassium (85%).It also examined the benefits and risks associated with the results in the reuse of domestic grey water for the purpose of vegetable gardening, irrigation, and toilet flushing. Consequently, this biofiltration method is natural, simple, and low cost-effective treatment in a holistic manner.


2011 ◽  
Vol 63 (10) ◽  
pp. 2360-2366 ◽  
Author(s):  
S. Ç. Ayaz ◽  
N. Findik ◽  
L. Akça ◽  
N. Erdoğan ◽  
C. Kınacı

This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 ± 4% for COD, 83 ± 10% for BOD and 96 ± 3% for suspended solids with average effluent concentrations of 9 ± 5 mg/L COD, 6 ± 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.


2020 ◽  
Author(s):  
Liping Xiao ◽  
Tao Wang ◽  
Hongbin Lu ◽  
Shaoyong Lu ◽  
Jiaxin Li ◽  
...  

Abstract Background Single-stage constructed wetlands (CWs) has a single ecological service function and is greatly affected by temperature, which are general in removal of total nitrogen. Multistage hybrid CWs were proven to capable of enhancing removal of nitrogen. Therefore, this study aimed to explore the variation in nitrogen removal in the combined CWs-pond process from summer to winter and the contribution of plant harvesting and the functions of bacteria to nitrogen removal. Methods A pilot-scale multistage constructed wetland-pond system (MCWP) with the process of "the pre-ecological oxidation pond + the two-level horizontal subsurface flow constructed wetland (HSCW) + the surface flow constructed wetland (SFCW) and the submerged plant pond (SPP)" was used to treat actual polluted river water in the field. During the 124 days of operation, the nitrogen concentrations in the units influent and effluent of the system were measured every two days, and the plant height in HSCWs and SFCW was measured once per month. When the system operated stably to the 72nd day, the substrates in the CWs were sampled to analyze the bacterial community structure and composition. Results The concentration of total nitrogen (TN) in the MCWP gradually decreased from 3.46 mg/L to 2.04 mg/L, and the average removal efficiency of TN was approximately 40.74%. The SPP performed the best among all units, and the TN removal efficiency was as high as 16.08%. The TN removal efficiency was significantly positively affected by the daily highest temperature. A formula between the total TN removal efficiency and the highest temperature was obtained by nonlinear fitting. The TN removal load rate in the HSCWs was 2.7–3.7 times that of the SFCW. Furthermore, the TN transformed by Iris pseudacorus L. accounted for 54.53% in the SFCW. Conclusion We found that the significant positive correlation between the daily highest temperature and the total TN removal rate a field MCWP system. The SFCW, as an advanced treatment unit, increased the proportion of nitrogen removed by plant harvesting. The bacteria completed the nitrogen cycle in the SFCW, which had high-density planting, through a variety of nitrogen removal pathways.


1995 ◽  
Vol 32 (3) ◽  
pp. 87-93 ◽  
Author(s):  
P. R. Thomas ◽  
P. Glover ◽  
T. Kalaroopan

Pilot scale investigations were carried out to examine the pollutant removal efficiency of a constructed wetland receiving secondary treated sewage effluent. Four constructed wetland cells were established, three of them planted with either Schoenoplectus validus, Juncus ingens or both species of macrophytes, and the fourth serving as an unvegetated control cell. Although there was a significant improvement in the effluent quality during the initial ten month period of monitoring, results to date have not indicated any overall trend for pollutant removal by a particular plant species. Biochemical oxygen demand and chemical oxygen demand removals averaged between 71-75% while suspended solids removals were around 85% in the macrophyte cells. Ammonia reductions were in the range 17-24% but better nitrate reductions between 65-80% were obtained. Phosphorus removal has been low (13%) in all four of the wetland cells and bore hole samples have shown no groundwater contamination with nitrogen or phosphorus from the wetland system to date.


2021 ◽  
Vol 9 ◽  
Author(s):  
Agegnehu Alemu ◽  
Nigus Gabbiye ◽  
Brook Lemma

Tannery wastewater is composed of a complex mixture of organic and inorganic components from various processes that can critically pollute the environment, especially water bodies if discharged without treatment. In this study, integrated vesicular basalt rock and local plant species were used to establish a horizontal subsurface flow constructed wetland system and to investigate the treatment efficiency of tannery wastewater. Four pilot units were vegetated with P. purpureum, T. domingensis, C. latifolius, and E. pyramidalis, and a fifth unit was left unvegetated (control). The constructed wetland units in horizontal subsurface flow systems were effective in removing total chromium (Cr), chemical oxygen demand (COD), and 5-day biological oxygen demand (BOD5) from the inflow tannery wastewater. The removal efficiency reached up to 99.38, 84.03, and 80.32% for total Cr, COD, and BOD5, respectively, in 6 days of hydraulic retention time (HRT). The removal efficiency of total suspended solid (TSS), total phosphorus (TP), and nitrate (NO3−) of the constructed wetland units reached a maximum of 70.59, 62.32, and 71.23%, respectively. This integrated system was effective for treating tannery wastewater, which is below the Ethiopian surface water standard discharge limit set to BOD5 (200 mg L−1), COD (500 mg L−1), total Cr (2 mg L−1), NO3− (20 mg L−1), TSS (50 mg L−1), and TP (10 mg L−1).


2007 ◽  
Vol 55 (7) ◽  
pp. 155-161 ◽  
Author(s):  
L.L. Behrends ◽  
E. Bailey ◽  
P. Jansen ◽  
L. Houke ◽  
S. Smith

Several different types of constructed wetland systems are being used as decentralized treatment systems including surface-flow, subsurface-flow, vertical-flow, and hybrid systems. Archetypical wetland systems have design strengths and weaknesses, and therefore it should be possible to design combined (integrated) systems to optimize a number of important treatment processes. This study provides comparative efficacy data for two integrated wetland treatment systems (IWTS) designed to enhance treatment of medium strength wastewater generated from a pilot-scale intensive fish farm. Results from the twenty eight months study included consistently high removal of COD (84%+) and ammonia nitrogen (93%) in both systems. Initially, phosphorus removal was also high (>90%) in both systems, but removal efficacy declined significantly over time. Nitrate removal was significantly better in the system that provided sequential aerobic and anoxic environments. Short hydraulic retention times coupled with sustained removal of COD and ammonia indicate that the ReCip components could be a least-cost wastewater treatment technology in the decentralized market sector.


2010 ◽  
Vol 75 (1) ◽  
pp. 129-142 ◽  
Author(s):  
Milana Karajic ◽  
Ales Lapanje ◽  
Jaka Razinger ◽  
Alexis Zrimec ◽  
Danijel Vrhovsek

In order to find the optimal design characteristics of constructed wetlands for saline wastewater treatment, halotolerant microorganisms, isolated from the water of the Secovlje salterns, were inoculated into the media of a pilot-scale constructed wetland (CW). The purpose of this study was to examine the influence of different salinities on the efficiency of halotolerant microorganisms for the removal of pollutants in order to evaluate the possibility of their employment for saline wastewater treatment. The efficiency of ammonium removal (34.1 %) was the highest with 0 % NaCl in wastewater and slightly lower (31.8 %) when 2 g/dm3 saccharose was added to aerated 1.5 % NaCl wastewater. The highest removal efficiency of chemical oxygen demand (COD) in the pilot-scale subsurface flow (SSF) CW was 83.6 % when saccharose (2 g/dm3) was added to aerated 1.5 % NaCl wastewater. It was found that removal efficiency of the pilot-scale constructed wetland with inoculated halotolerant microorganisms showed a higher sensitivity to aeration and the presence of saccharose than to variation of the salinity of the wastewater. It can be concluded that halotolerant microorganisms, isolated from the Secovlje salterns, are not sensitive to the changes in salinity and are, therefore, an alternative in the treatment of saline wastewater with a constructed wetland. However, with aeration their efficiency could be further improved.


Sign in / Sign up

Export Citation Format

Share Document