scholarly journals Long-term effect of water diversion and CSOs on the remediation of heavy metals and microbial community in river sediments

2019 ◽  
Vol 79 (12) ◽  
pp. 2395-2406 ◽  
Author(s):  
Jun Wu ◽  
Zuxin Xu ◽  
Huaizheng Li ◽  
Peng Li ◽  
Mei Wang ◽  
...  

Abstract Untreated combined sewer overflows (CSOs) cause serious water pollution problems. In this study, the effects of CSO-induced heavy metals and the remediation practice of installation of a long-term water diversion (LTWD) on the microbial environment in river sediments were analyzed in an inland river. The Zn, Cd, Cr, and Cu contents in sediments and water were analyzed. DNA extraction and polymerase chain reaction analysis were conducted based on the Illumina MiSeq platform. The results showed that CSOs have a significant adverse impact on the diversity of microbial populations in river sediments. The LTWD is helpful in improving the richness of microorganisms and the proportion of Gram −ves, but it is challenging to reduce the accumulation of heavy metals in the sediment. The correlation analysis shows a strong relationship between some metabolic pathways and Zn and Cd accumulation in river sediments. Some detoxification compound metabolisms are also promoted at these sites. Thus, chronic exposure to environmental heavy metals from CSOs decreases the river microbial community, and further affects the ecological environment of the river. Therefore, without eliminating CSOs or reducing overflow frequency, it is difficult to alleviate the accumulation of heavy metals in river sediments and improve river ecology via water diversion alone.

2017 ◽  
Vol 16 (2) ◽  
pp. 86-91 ◽  
Author(s):  
Oľga Šestinová ◽  
Lenka Findoráková ◽  
Jozef Hančuľák ◽  
Tomislav Špaldon

Abstract The purpose of the present study was to develop a useful screening method to assess genotoxic effect of polluted bottom sediments from the water reservoir Ružin No.I. The Hornád and Hnilec Rivers drained a former mining area, have been polluted in the long-term by heavy metals (Cu, As, Sb, Hg), which significantly contributed to environmental degradation. Genotoxicity of bottom sediment was evaluated by test SOS-ChromoPadTM 3.0 for solid samples without extraction. The mentioned test represents simple, quick and direct sediment phase toxicity testing procedure. In this test bacterial strain Escherichia coli K12 PQ37 was used. The results of SOS-ChromoPadTM 3.0 showed that sample Hornád has low potential genotoxic effect on the environment. It was determined on the basis of slight blue colouration of chromogenic paper at the point of sediment application. The sample Hnilec was negative. This test allows significantly reduce the time for obtaining information about sediments genotoxicity and accept necessary security proceeding in time.


2021 ◽  
Vol 54 (1D) ◽  
pp. 82-92
Author(s):  
Ayman Qadoori

Al-Ma'ail river is one of the small Iraqi rivers, as it extends over a distance of approximately 47 km. Al-Ma'ail river is located next to Halfaya oil field, which is the main source of pollution to Al-Ma’ail river, consequently, the environmental quality of Al-Ma'ail river is under great pressure from a variety of human activities. Although water is commonly used as an indicator of contamination by heavy metals, sediments are considered as water important in assessing the environmental situation. In this study, water and sediment samples were analyzed to assess the pollution status of heavy metals in Al-Ma'ail river, with the aim of determining its ability to sustain aquatic life. Samples were taken from five sites along Al-Ma'ail river between the branch area of Al-Ma'ail river from the Al-Kahla river (which also branches from Tigris River upon its exit from Amara City), until Al-Ma'ail river reaches pond of Umm Al-Na'aj (marshland). Ten Water and five sediment samples were collected in August 2020. Samples were analyzed for eight heavy metals: As, Cd, Cr, Cu, Pb, V, Ni and Zn, using AAS techniques. As for the water samples, all the concentrations were over the standards (except Zn which was within the limits in all samples), While Cu concentration in (samples SW1 to SW7) are within the standards (except SW8 and SW9 are close U.S.EPA and within WHO). Concentrations of heavy metals in sediments were over the limits in all samples. The bio-concentration values of heavy metals were calculated and all metal rates were found within the acceptable range for the U.S. EPA, except for vanadium, which was higher than the permissible limit and was a bio-accumulative and considered as an indicator of oil pollution. The results indicate the presence of long-term contamination of the eight selected heavy metals in the river sediments which may be of concern to the health of the aquatic ecosystem.


2020 ◽  
Author(s):  
Lei Zhang ◽  
Demei Tu ◽  
Xingchen Li ◽  
Wenxuan Lu ◽  
Jing Li

Abstract Background: The contamination of the aquatic environment of urban rivers with industrial wastewater has affected the abiotic conditions and biological activities of the trophic levels of the ecosystem, particularly sediments. However, most current research about microorganism in urban aquatic environments has focused on indicator bacteria related to feces and organic pollution. Meanwhile, they ignored the interactions among microorganisms. To deeply understand the impact of industrial contamination on microbial community, we study the bacterial community structure and diversity in river sediments under the influence of different types of industrial pollution by Illumina MiSeq high-throughput sequencing technology and conduct a more detailed analysis of microbial community structure through co-occurrence networks.Results: The overall community composition and abundance of individual bacterial groups differed between samples. In addition, redundancy analysis indicated that the structure of the bacterial community in river sediments was influenced by a variety of environmental factors. TN, TP, TOC and metals (Cu, Zn and Cd) were the most important driving factors that determined the bacterial community in urban river sediments (P <0.01). According to PICRUSt analysis, the bacterial communities in different locations had similar overall functional profiles. It is worth noting that the 15 functional genes related to xenobiotics biodegradation and metabolism were the most abundant in the same location. The non-random assembly patterns of bacterial composition in different types of industrially polluted sediments were determined by a co-occurrence network. Environmental conditions resulting from different industrial pollutants may play an important role in determining their co-occurrence patterns of these bacterial taxa. Among them, the bacterial taxa involved in carbon and nitrogen cycles in module I were relatively abundant, and the bacterial taxa in module II were involved in the repair of metal pollution.Conclusions: Our data indicate that long-term potential interactions between different types of industrial pollution and taxa collectively affect the structure of the bacterial community in urban river sediments.


2020 ◽  
Author(s):  
lei zhang ◽  
Demei Tu ◽  
Xingchen Li ◽  
Wenxuan Lu ◽  
Jing Li

Abstract Background: The contamination of the aquatic environment of urban rivers with industrial wastewater has affected the abiotic conditions and biological activities of the trophic levels of the ecosystem, particularly sediments. However, most current research about microorganism in urban aquatic environments has focused on indicator bacteria related to feces and organic pollution. Meanwhile, they ignored the interactions among microorganisms. To deeply understand the impact of industrial contamination on microbial community, we study the bacterial community structure and diversity in river sediments under the influence of different types of industrial pollution by Illumina MiSeq high-throughput sequencing technology and conduct a more detailed analysis of microbial community structure through co-occurrence networks.Results: Although the composition of dominant bacterial phyla in different sediment samples was similar, their relative abundance was different. These dominant bacterial phyla showed significant differences in different types of industrial contaminated sediment. In addition, redundancy analysis indicated that the structure of the bacterial community in river sediments was influenced by a variety of environmental factors. TN, TP, TOC and metals (Cu, Zn and Cd) were the most important driving factors that determined the bacterial community in urban river sediments (P <0.01). According to PICRUSt analysis, the bacterial communities in different locations had similar overall functional profiles. It is worth noting that the 15 functional genes related to xenobiotics biodegradation and metabolism were the most abundant in the same location. The non-random assembly patterns of bacterial composition in different types of industrially polluted sediments were determined by a co-occurrence network. Environmental conditions resulting from different industrial pollutants may play an important role in determining their co-occurrence patterns of these bacterial taxa. Among them, the bacterial taxa involved in carbon and nitrogen cycles in module I were relatively abundant, and the bacterial taxa in module II were involved in the repair of metal pollution.Conclusions: Our data indicate that long-term potential interactions between different types of industrial pollution and taxa collectively affect the structure of the bacterial community in urban river sediments.


2020 ◽  
Author(s):  
Lei Zhang ◽  
Demei Tu ◽  
Xingchen Li ◽  
Wenxuan Lu ◽  
Jing Li

Abstract Background: The contamination of the aquatic environment of urban rivers with industrial wastewater has affected the abiotic conditions and biological activities of the trophic levels of the ecosystem, particularly sediments. However, most current research about microorganism in urban aquatic environments has focused on indicator bacteria related to feces and organic pollution. Meanwhile, they ignored the interactions among microorganisms. To deeply understand the impact of industrial contamination on microbial community, we study the bacterial community structure and diversity in river sediments under the influence of different types of industrial pollution by Illumina MiSeq high-throughput sequencing technology and conduct a more detailed analysis of microbial community structure through co-occurrence networks.Results: The overall community composition and abundance of individual bacterial groups differed between samples. In addition, redundancy analysis indicated that the structure of the bacterial community in river sediments was influenced by a variety of environmental factors. TN, TP, TOC and metals (Cu, Zn and Cd) were the most important driving factors that determined the bacterial community in urban river sediments (P <0.01). According to PICRUSt analysis, the bacterial communities in different locations had similar overall functional profiles. It is worth noting that the 15 functional genes related to xenobiotics biodegradation and metabolism were the most abundant in the same location. The non-random assembly patterns of bacterial composition in different types of industrially polluted sediments were determined by a co-occurrence network. Environmental conditions resulting from different industrial pollutants may play an important role in determining their co-occurrence patterns of these bacterial taxa. Among them, the bacterial taxa involved in carbon and nitrogen cycles in module I were relatively abundant, and the bacterial taxa in module II were involved in the repair of metal pollution.Conclusions: Our data indicate that long-term potential interactions between different types of industrial pollution and taxa collectively affect the structure of the bacterial community in urban river sediments.


2020 ◽  
Author(s):  
lei zhang ◽  
Demei Tu ◽  
Xingchen Li ◽  
Wenxuan Lu ◽  
Jing Li

Abstract Background: The contamination of the aquatic environment of urban rivers with industrial wastewater has affected the abiotic conditions and biological activities of the trophic levels of the ecosystem, particularly sediments. However, most current research about microorganism in urban aquatic environments has focused on indicator bacteria related to feces and organic pollution. Meanwhile, they ignored the interactions among microorganisms. To deeply understand the impact of industrial contamination on microbial community, we study the bacterial community structure and diversity in river sediments under the influence of different types of industrial pollution by Illumina MiSeq high-throughput sequencing technology and conduct a more detailed analysis of microbial community structure through co-occurrence networks. Results: Although these sediment samples have a similar characteristic profile of high bacterial rank, their relative abundance was different, and there were significant differences among different locations. In addition, redundancy analysis indicated that the structure of the bacterial community in river sediments was influenced by a variety of environmental factors. TN, TP, TOC and metals (Cu, Zn and Cd) were the most important driving factors that determined the bacterial community in urban river sediments (P <0.01). According to PICRUSt analysis, the bacterial communities in different locations had similar overall functional profiles. It is worth noting that the 15 functional genes related to xenobiotics biodegradation and metabolism were the most abundant in the same location. The non-random assembly patterns of bacterial composition in different types of industrially polluted sediments were determined by a co-occurrence network. Among them, Denitratisoma, Anaeromyxobacter, and Candidatus Microthrix in the co-occurrence network were identified as keystone genera. The microbial taxa in the same module had closer ecological connections and involved carbon and nitrogen cycles as well as the repair of metal pollution. Conclusions: Our data indicate that long-term potential interactions between different types of industrial pollution and taxa collectively affect the structure of the bacterial community in urban river sediments.


2020 ◽  
Vol 21 (2) ◽  
pp. 169-177
Author(s):  
Michael B. Dilling ◽  
Anne C. DiSante ◽  
Ross Durland ◽  
Christine E. Flynn ◽  
Leonid Metelitsa ◽  
...  

Collaborations between academia and industry are growing in scope, duration, and sophistication. The best collaborations recognize the unique strengths and skill sets of both parties and are structured to leverage what each party does best. In many cases, these collaborations develop into long-term relationships, and it is important to develop the systems and structures needed to support these relationships to ensure that they meet the needs of both sides. Successful collaborations require the formulation of a governance structure to facilitate communication, decision-making, assessment of progress, and the inevitable changes of direction that accompany product development. This panel explored the pragmatic aspects of successfully structuring collaborations and managing the relationships after the deal is done. Several dominant themes associated with successful collaborative relationships emerged from the discussion, and these will be explored in this article.


2021 ◽  
Vol 13 (13) ◽  
pp. 7358
Author(s):  
Dong-Hyun Kim ◽  
Hyun-Sik Yun ◽  
Young-Saeng Kim ◽  
Jong-Guk Kim

This study analyzed the microbial community metagenomically to determine the cause of the functionality of a livestock wastewater treatment facility that can effectively remove pollutants, such as ammonia and hydrogen sulfide. Illumina MiSeq sequencing was used in analyzing the composition and structure of the microbial community, and the 16S rRNA gene was used. Through Illumina MiSeq sequencing, information such as diversity indicators as well as the composition and structure of microbial communities present in the livestock wastewater treatment facility were obtained, and differences between microbial communities present in the investigated samples were compared. The number of reads, operational taxonomic units, and species richness were lower in influent sample (NLF), where the wastewater enters, than in effluent sample (NL), in which treated wastewater is found. This difference was greater in June 2019 than in January 2020, and the removal rates of ammonia (86.93%) and hydrogen sulfide (99.72%) were also higher in June 2019. In both areas, the community composition was similar in January 2020, whereas the influent sample (NLF) and effluent sample (NL) areas in June 2019 were dominated by Proteobacteria (76.23%) and Firmicutes (67.13%), respectively. Oleiphilaceae (40.89%) and Thioalkalibacteraceae (12.91%), which are related to ammonia and hydrogen sulfide removal, respectively, were identified in influent sample (NLF) in June 2019. They were more abundant in June 2019 than in January 2020. Therefore, the functionality of the livestock wastewater treatment facility was affected by characteristics, including the composition of the microbial community. Compared to Illumina MiSeq sequencing, fewer species were isolated and identified in both areas using culture-based methods, suggesting Illumina MiSeq sequencing as a powerful tool to determine the relevance of microbial communities for pollutant removal.


Sign in / Sign up

Export Citation Format

Share Document