Removal of hazardous substances in municipal wastewater treatment plants

2020 ◽  
Vol 81 (9) ◽  
pp. 2011-2022
Author(s):  
Vallo Kõrgmaa ◽  
Mailis Laht ◽  
Riin Rebane ◽  
Erki Lember ◽  
Karin Pachel ◽  
...  

Abstract Chemical pollution poses a threat to the aquatic environment and to human health. Wastewater treatment plants are the last defensive line between the aquatic environment and emissions of pollutants. This study focuses on identification of most relevant hazardous substances in Estonian municipal wastewater and their fate in the treatment process. During this study, seasonal wastewater and sewage sludge samples were collected from nine municipal wastewater treatment plants and analyzed for 282 hazardous substances, including EU (n = 45) and Estonian (n = 31) priority substances. Results of this study show that several substances that are subject to international restrictions (e.g. Stockholm Convention) are still present in untreated sewage. Wastewater treatment systems that had a greater level of complexity (TEC >5) were more successful in removing hazardous substances. Statistical analyses showed that removal efficiency of organic hazardous substances had significant (p-value <0.05) linear correlation with removal efficiencies of chemical oxygen demand (COD) and total suspended solids (TSS), but a monotonic relationship with operators' competency. This study showed that operators' competency had a strong influence on the stability of the wastewater treatment efficiency and removal of organic hazardous substances.

2013 ◽  
Vol 67 (7) ◽  
pp. 1590-1598 ◽  
Author(s):  
F. Masi ◽  
S. Caffaz ◽  
A. Ghrabi

In the present paper the detailed design and performances of two municipal wastewater treatment plants, a four-stage constructed wetlands (CW) system located in the city of Dicomano (about 3,500 inhabitants) in Italy, and a three-stage CW system for the village of Chorfech (about 500 inhabitants) in Tunisia, are presented. The obtained results demonstrate that multi-stage CWs provide an excellent secondary treatment for wastewaters with variable operative conditions, reaching also an appropriate effluent quality for reuse. Dicomano CWs have shown good performances, on average 86% of removal for the Organic Load, 60% for Total Nitrogen (TN), 43% for Total Phosphorus (TP), 89% for Total Suspended Solids (TSS) and 76% for Ammonium (NH4+). Even the disinfection process has performed in a very satisfactory way, reaching up to 4–5 logs of reduction of the inlet pathogens concentration, with an Escherichia coli average concentration in the outlet often below 200 UFC/100 mL. The mean overall removal rates of the Chorfech CWs during the monitored period have been, respectively, equal to 97% for TSS and Biochemical Oxygen Demand (BOD5), 95% for Chemical Oxygen Demand (COD), 71% for TN and 82% for TP. The observed removal of E. coli by the CW system was in this case 2.5 log units.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 121-133
Author(s):  
C Forsberg ◽  
B Hawerman ◽  
B Hultman

Experience from advanced municipal wastewater treatment plants and recovery of polluted waters are described for the last ten years in Sweden. Except in municipalities with large recipients, the urban population is served by treatment plants with combined biological and chemical treatment. Most of these plants are post-precipitation plants. Several modified operational modes have been developed in order to improve the removal efficiencies of pollutants and to reduce the costs. Results are presented on the recovery of specially investigated lakes with a lowered supply of total phosphorus and organic matter.


Sign in / Sign up

Export Citation Format

Share Document