scholarly journals SEDIMENT FLOW CHARACTERISTICS ON SEABED SUBJECTED TO STATIONARY WAVES WITH DIAGONAL INCIDENT WAVE LOADING NEAR LINE STRUCTURES

2019 ◽  
Vol 16 (54) ◽  
Author(s):  
Anh Quang TRAN
2012 ◽  
Vol 610-613 ◽  
pp. 2506-2512
Author(s):  
Jun Ning Li ◽  
Ju Rui Yang ◽  
Jing Luo

Form 12 groups times flume experiment of No-plant and plant height of 2,5,9cm simulation, the order of effect that sediment flow characteristics with vegetation growth was investigated. The results show that the vertical velocity distribution of sediment flow with plant is no longer consistent with logarithm distribution with no plants in sediment flow, but for the "S"-type distribution. The Re increases with the decrease of plant height and the increase of flow. The roughness decreases with the increase of plant height and flow.


2021 ◽  
Vol 6 (3) ◽  
pp. 241
Author(s):  
La Ode Hadini ◽  
Junun Sartohadi ◽  
M. Anggri Setiawan ◽  
Djati Mardiatno ◽  
Nugroho Christanto

Increasing population densities and food demands are major factors contributing to the widespread use of agricultural drylands in upper volcanic slope areas. This phenomenon poses a high risk of severe erosional events that are environmentally hazardous. Therefore, this study aims to analyze the sediment flow characteristics, based on the relationship between sediment flow and water level as well as the sediment discharge rate and soil loss. Field surveys were conducted to determine the soil measurement, slope morphology and dryland cover characteristics. The sediment flow was evaluated at the gully outlet, where 169 suspension data pairs for the modeling and 130 suspension data pairs for the validation, as well as the bed load, water level, rainfall and water flow characteristics were obtained. Tables and figures were subsequently used to represent the measurement data and analysis results for the correlation between the flow rate effects, sediment and soil loss on the water surface. The results showed that the sediment flow in volcanic landscape slopes with dryland agriculture were possibly characterized by the polynomial relationship, using the suspension discharge model, Qs=0.0322Q2+6.0625Q–1.2658. Under this condition, the average rate of soil loss in the form of sediment load and erosion rate of the catchment area occurred at 953.53 and ​​1,657.94 ton/ha/yr, respectively. Furthermore, the sediment sources in the soil loss were believed to originate from 83% of the suspended sediments and 17% bed loads. Keywords: Discharge; Dryland; Landscape; Sediment; Volcano Copyright (c) 2021 Geosfera Indonesia and Department of Geography Education, University of Jember   This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License


2019 ◽  
Vol 5 (3) ◽  
pp. 243
Author(s):  
Bambang Yulistiyanto ◽  
Bambang Kironoto ◽  
Bangun Giarto ◽  
Mariatul Kiptiah ◽  
Muhammad Lutfi Tantowi

The accumulation of suspended sediment reduces the capacity in the river and deteriorates the water quality. Kuning  River in Yogyakarta is one of the main rivers in Yogyakarta, Indonesia, which is currently facing the issue of suspended sediments. To reduce the effect of suspended sediment and determine a preventive measure, hence, it is necessary to study the characteristics of the suspended sediment flow. Therefore, this study aims to investigate the suspended sediment flow characteristics, i.e. the velocity, and the concentration profiles at specific points in the transverse direction of the channel as well as the correlation of the suspended sediment discharge. Thirty (30) profiles of velocity and suspended sediment concentration were measured at six different points along the Kuning River. Opcon probe was used to measure suspended sediment concentration, while the propeller current meter was used to measure mean point-velocity profiles. Results of this study show the suspended sediment discharge ratio, defined as  are higher in the middle part of the channel than the one near the edge of the channel. The position of z/B where the values of  1 occurs at z/B = 0,19 and z/B = 0,75, which depend on the irregularity of the channel cross-sections. For practical purposes, the depth-averaged velocity and suspended sediment concentration can be determined from 1, 2 and/or 3 points measurement at y = 0,2D, 0,4D and 0,8D.


2002 ◽  
Vol 82 (12) ◽  
pp. 2419-2440
Author(s):  
S. Golyandin ◽  
S. Kustov ◽  
S. Nikanorov ◽  
K. Sapozhnikov ◽  
A. Sinani ◽  
...  

Author(s):  
V.N. Petrov ◽  
◽  
F.M. Galimov ◽  
L.A. Akhmetzyanova ◽  
S.V. Petrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document