scholarly journals LAND SURFACE EFFECTS AND THERMAL PERFORMANCE IN HOT-HUMID CLIMATE AREA

2019 ◽  
Vol 17 (62) ◽  
Author(s):  
Mustamin Rahim
2015 ◽  
Vol 775 ◽  
pp. 44-49
Author(s):  
Yan Zou

The study analyzed the thermal performance of a sensible heat recovery system in an office building in Beijing area. Based on proposing the basic evaluation index of the thermal performance, the study analyzed the effect of outdoor temperature and wind speed on the heat recovery efficiency and the reduction of fresh air load. The analysis results show that, the operation effect of the sensible heat recovery device in winter is better. In winter, the sensible heat efficiency η is higher than 60%, the system has higher EER, and the fresh air load can be reduced more than 50%. While the sensible heat efficiency η is lower than 60% in most time in summer. And in a hot, humid climate, the recovery effect of sensible heat recovery device is significantly reduced.


2009 ◽  
Vol 4 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Vijayalaxmi J ◽  
S.P Sekar

In a hot-humid tropical climate, indoor thermal performance can be enhanced by comfort ventilation. Indoor ventilation depends upon building opening size. But risks involved in providing openings include ingress of mosquitoes and insects which thrive in the tropical climate. A practical and prevalent option to prevent insects in ventilated dwellings of the tropical, hot-humid city of Chennai, India is through the use of fly screens. Fly screens, when used over openings, prevent a certain quantum of solar radiation and wind from entering inside the rooms. Reduced direct solar radiation prevents the indoors from heating up, while reduced wind movement prevents the cross ventilation. Therefore, it is important to know the indoor thermal performance of ventilated rooms in the presence of fly screens with changing opening sizes. The criterion to evaluate indoor thermal performance in this paper is indoor air temperature. The aim of this research is to investigate the influence of fly screens on openings with varying sizes, in a naturally ventilated dwelling in the hot-humid climate of Chennai, India, during the summer period. The results of the study show that fly screens raise the indoor air temperature when openings are in the range of 100% to 35% of the room floor area. There is no significant change in the indoor air temperature when the opening sizes are less than 30% of the room floor area.


2018 ◽  
Vol 34 ◽  
pp. 02053
Author(s):  
Esra’a Sh. Abbaas ◽  
Ala’eddin A. Saif ◽  
MAC Munaaim ◽  
Md. Azree Othuman Mydin

The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.


2020 ◽  
Vol 12 (7) ◽  
pp. 2591
Author(s):  
Jin Wei ◽  
Fangsi Yu ◽  
Haixiu Liang ◽  
Maohui Luo

Due to the different types of courtyards in vertical courtyard system (VCS), their impacts on thermal performance in office buildings may vary. To better understand this issue, this paper investigates the thermal performance impact of three typical vertical courtyards. A field case study was conducted in VCSs during two typical extreme hot days under hot-humid climate conditions. The results show that the vertical courtyards have significant cooling effects under hot-humid climatic conditions. Via testing on linear, integrated, and rooftop courtyard with fusion layout, the fusion one has an obviously positive impact on air temperature reduction (4.3 °C). Compared with the linear and integrated courtyards, the maximum air temperature difference of fusion layout is around 1.6 °C. The thermal radiation environment of the fusion layout was better than that of the other two (linear and integrated). Besides, the surface temperature of the pavements (wood panel) in the vertical courtyards can reach 47 °C, while the vegetation can lower it by 8 °C under the same weather conditions. These findings show that the courtyard with fusion layout is more suitable for extreme hot weather conditions.


Geothermics ◽  
2022 ◽  
Vol 99 ◽  
pp. 102313
Author(s):  
Shams Forruque Ahmed ◽  
M.M.K. Khan ◽  
M.T.O. Amanullah ◽  
M.G. Rasul ◽  
N.M.S. Hassan

Sign in / Sign up

Export Citation Format

Share Document