scholarly journals Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

2018 ◽  
Vol 34 ◽  
pp. 02053
Author(s):  
Esra’a Sh. Abbaas ◽  
Ala’eddin A. Saif ◽  
MAC Munaaim ◽  
Md. Azree Othuman Mydin

The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

2020 ◽  
Vol 12 (7) ◽  
pp. 2591
Author(s):  
Jin Wei ◽  
Fangsi Yu ◽  
Haixiu Liang ◽  
Maohui Luo

Due to the different types of courtyards in vertical courtyard system (VCS), their impacts on thermal performance in office buildings may vary. To better understand this issue, this paper investigates the thermal performance impact of three typical vertical courtyards. A field case study was conducted in VCSs during two typical extreme hot days under hot-humid climate conditions. The results show that the vertical courtyards have significant cooling effects under hot-humid climatic conditions. Via testing on linear, integrated, and rooftop courtyard with fusion layout, the fusion one has an obviously positive impact on air temperature reduction (4.3 °C). Compared with the linear and integrated courtyards, the maximum air temperature difference of fusion layout is around 1.6 °C. The thermal radiation environment of the fusion layout was better than that of the other two (linear and integrated). Besides, the surface temperature of the pavements (wood panel) in the vertical courtyards can reach 47 °C, while the vegetation can lower it by 8 °C under the same weather conditions. These findings show that the courtyard with fusion layout is more suitable for extreme hot weather conditions.


2020 ◽  
Vol 13 (1) ◽  
pp. 201
Author(s):  
Pau Chung Leng ◽  
Gabriel Hoh Teck Ling ◽  
Mohd Hamdan Ahmad ◽  
Dilshan Remaz Ossen ◽  
Eeydzah Aminudin ◽  
...  

The provision requirement of 10% openings of the total floor area stated in the Uniform Building By-Law 1984 Malaysia is essential for natural lighting and ventilation purposes. However, focusing on natural ventilation, the effectiveness of thermal performance in landed residential buildings has never been empirically measured and proven, as most of the research emphasized simulation modeling lacking sufficient empirical validation. Therefore, this paper drawing on field measurement investigates natural ventilation performance in terraced housing with an air-well system. The key concern as to what extent the current air-well system serving as a ventilator is effective to provide better thermal performance is to be addressed. By adopting an existing single-story air-welled terrace house, indoor environmental conditions and thermal performance were monitored and measured using HOBO U12 air temperature and humidity, the HOBO U12 anemometer, and the Delta Ohm HD32.3 Wet Bulb Globe Temperature meter for a six-month duration. The results show that the air temperature of the air well ranged from 27.48 °C to 30.92 °C, with a mean relative humidity of 72.67% to 79.25%. The mean air temperature for a test room (single-sided ventilation room) ranged from 28.04 °C to 30.92 °C, with a relative humidity of 70.16% to 76.00%. These empirical findings are of importance, offering novel policy insights and suggestions. Since the minimum provision of 10% openings has been revealed to be less effective to provide desirable thermal performance and comfort, mandatory compliance with and the necessity of the bylaw requirement should be revisited.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zuzhong Li ◽  
Yayun Zhang ◽  
Chunguang Fa ◽  
Xiaoming Zou ◽  
Haiwei Xie ◽  
...  

Temperature is known to be one of the most important factors affecting the design and performance of asphalt concrete pavement. The distresses of asphalt overlay are closely related to its temperature, particularly in Guangxi, a hot-humid-climate region in China. This research is to analyze the impact of meteorological factors on temperature at 2 cm depth in asphalt overlay by ReliefF algorithm and also obtain the temperature prediction model using MATLAB. Two test sites were installed to monitor the temperatures at different pavement depths from 2014 to 2016; meanwhile, the meteorological data (including air temperature, solar radiation, wind speed, and relative humidity) were collected from the two meteorological stations. It has been found that the temperature at 2 cm depth experiences greater temperature variation, and the maximum and minimum temperatures of asphalt overlay, respectively, occur at 2 cm depth and on the surface. Besides, the results of ReliefF algorithm have also shown that the temperature at 2 cm depth is affected significantly by solar radiation, air temperature, wind speed, and the relative humidity. Based on these analyses, the prediction model of maximum temperature at 2 cm depth is developed using statistical regression. Moreover, the data collected in 2017 are used to validate the accuracy of the model. Compared with the existing models, the developed model was confirmed to be more effective for temperature prediction in hot-humid region. In addition, the analysis of rutting depth and overlay deformation for the two test sections with different materials is done, and the results have shown that reasonable structure and materials of asphalt overlay are vital to promote the high-temperature antideforming capability of pavement.


2009 ◽  
Vol 4 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Vijayalaxmi J ◽  
S.P Sekar

In a hot-humid tropical climate, indoor thermal performance can be enhanced by comfort ventilation. Indoor ventilation depends upon building opening size. But risks involved in providing openings include ingress of mosquitoes and insects which thrive in the tropical climate. A practical and prevalent option to prevent insects in ventilated dwellings of the tropical, hot-humid city of Chennai, India is through the use of fly screens. Fly screens, when used over openings, prevent a certain quantum of solar radiation and wind from entering inside the rooms. Reduced direct solar radiation prevents the indoors from heating up, while reduced wind movement prevents the cross ventilation. Therefore, it is important to know the indoor thermal performance of ventilated rooms in the presence of fly screens with changing opening sizes. The criterion to evaluate indoor thermal performance in this paper is indoor air temperature. The aim of this research is to investigate the influence of fly screens on openings with varying sizes, in a naturally ventilated dwelling in the hot-humid climate of Chennai, India, during the summer period. The results of the study show that fly screens raise the indoor air temperature when openings are in the range of 100% to 35% of the room floor area. There is no significant change in the indoor air temperature when the opening sizes are less than 30% of the room floor area.


2020 ◽  
Vol 46 (2) ◽  
pp. 161-168
Author(s):  
Wanda K. Widigdo ◽  
Samuel Hartono ◽  
Luciana Kristanto

This research aimed to find the influence of vegetation outside the window to indoor light and thermal in Design studio, Architecture department of Petra Christian University, Surabaya. The vegetation was Shibataea kumasasa, cultivated in planter boxes, 90-100 centimeter high. The data was collected from the West and North window, for condition with and without vegetation outside the window. The measurement was taken on March until May 2019, using Hobo U12-012 data logger for measuring air temperature (°C), relative humidity (%) and illuminance (lux). Beside those physical measurement, the perception of 89 students as building user was also taken. The measurement result from windows facing West and North with the vegetation, the lowest indoor air temperature was 27°C with an average relative humidity of 70%. Meant it's at the upper edge of the comfort zoneof Bioclimatic Chart from Olgyay and Canada’s National Occupational Health & Safety Resource (CCOHS), so the indoor space was still uncomfortable and cooling was required to get into the comfort zone at warm humid climate. Result from lighting measurements obtained for west-oriented windows with vegetation outside the window, the highest illuminance was 350 lux at 02:45 pm, as well as for windows facing North at 07.30 am - 04.45 pm in range of 105 - 155 lux (highest). So, if there are vegetation outside windows, it will require electric lighting addition, because the illuminance are below the SNI 03-6197-2011which recommends 750 lux for design studio. Whilst the user respond from the questionnaire taken, stated that aesthetic vegetation was expected for natural element, blocked the penetration of solar radiation into indoor, and reduce glare to increase visual comfort without reducing luminous sufficiency for the visual activities in the design studio.


Author(s):  
Pau Chung Leng ◽  
Mohd Hamdan Ahmad ◽  
Dilshan Remaz Ossen ◽  
Gabriel Hoh Teck Ling ◽  
Eeydzah Aminudin ◽  
...  

The provision requirement of 10% openings of the total floor area stated in the Uniform Building by Law 1984 Malaysia has been practiced by designers for building plan submission approval. However, the effectiveness of thermal performance in landed residential buildings, despite the imposition by the by-law, has never been empirically measured and proven. Although terraced houses in Malaysia have dominated 40.9% of the total property transaction in 2019, such mass production with typical designs hardly provides its occupants with thermal comfort due to the static outdoor air condition and lack of external windows, where the conventional ventilation technique does not work well, even for houses with an air well system. Consequently, the occupants need to rely on mechanical cooling, which is a high energy-consuming component contributing to outdoor heat dissipation and therefore urban heat island effect. Thus, encouraging more effective natural ventilation to eliminate excessive heat from the indoor environment is critical. Since most of the research focuses on simulation modelling lacking sufficient empirical validation, this paper drawing on field measurement investigates natural ventilation performance in terraced housing with an air well system. More importantly, the key concern as to what extent the current air well system serving as a ventilator is effective to provide better thermal performance in the single storey terraced house is to be addressed. By adopting an existing single storey air welled terrace house, the existing indoor environmental conditions and thermal performance were monitored and measured using scientific equipment, namely HOBO U12 air temperature and air humidity, the HOBO U12 anemometer and the Delta Ohm HD32.3 Wet Bulb Globe Temperature meter for a six-month duration. The findings show that the air temperature of the air well ranged from 27.48°C to 30.92°C, while the mean relative humidity were from 72.67% to 79.25%. The mean air temperature for a test room (single sided ventilation room) ranged from 28.04°C to 30.92°C with a relative humidity of 70.16% to 76%. These empirical findings are of importance, offering novel policy insights and suggestions to potentially revising the existing building code standard and by laws; since the minimum provision of 10% openings has been revealed to be less effective to provide a desired thermal performance and comfort, mandatory compliance with, and the necessity for, the bylaw requirement should be revisited and further studied.


2014 ◽  
Vol 567 ◽  
pp. 631-636
Author(s):  
Leng Pau Chung ◽  
Mohd Hamdan Ahmad ◽  
Dilshan Remaz Ossen ◽  
Malsiah Binti Hamid ◽  
Mohammad Baharvand

Thermal performance of terrace house in Malaysia very much depends on the spatial design due to limited responsive environment factors. Building orientation is one of the important responsive factors under design consideration. The main concerns of the opening’s orientation are solar radiation and wind. In Malaysia, the maximum amount of solar radiation directly affects the thermal performance and thus the orientation of the window should be designed in the way to minimize solar gain and maximize natural ventilation. This paper investigates the effect of building orientation on the thermal performance of the residential room with solar chimney. The case study house facing north was located at Kuching, Sarawak, Malaysia. The field measurement was conducted in the case study house compound on 16 may 2012 to obtain the boundaries condition for CFD (Computational Fluid Dynamic) simulation. Four cardinal orientations were selected to investigate the thermal performance via CFD in DesignBuilder. The results show that the south facing window could maintain the lowest air temperature in the indoor environment with mean air temperature of 31.78°C and air mean velocity 0.023m/s with 35°C extreme outdoor temperature and zero wind velocity.


Sign in / Sign up

Export Citation Format

Share Document