scholarly journals Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study

2020 ◽  
Vol 12 (7) ◽  
pp. 2591
Author(s):  
Jin Wei ◽  
Fangsi Yu ◽  
Haixiu Liang ◽  
Maohui Luo

Due to the different types of courtyards in vertical courtyard system (VCS), their impacts on thermal performance in office buildings may vary. To better understand this issue, this paper investigates the thermal performance impact of three typical vertical courtyards. A field case study was conducted in VCSs during two typical extreme hot days under hot-humid climate conditions. The results show that the vertical courtyards have significant cooling effects under hot-humid climatic conditions. Via testing on linear, integrated, and rooftop courtyard with fusion layout, the fusion one has an obviously positive impact on air temperature reduction (4.3 °C). Compared with the linear and integrated courtyards, the maximum air temperature difference of fusion layout is around 1.6 °C. The thermal radiation environment of the fusion layout was better than that of the other two (linear and integrated). Besides, the surface temperature of the pavements (wood panel) in the vertical courtyards can reach 47 °C, while the vegetation can lower it by 8 °C under the same weather conditions. These findings show that the courtyard with fusion layout is more suitable for extreme hot weather conditions.

2018 ◽  
Vol 34 ◽  
pp. 02053
Author(s):  
Esra’a Sh. Abbaas ◽  
Ala’eddin A. Saif ◽  
MAC Munaaim ◽  
Md. Azree Othuman Mydin

The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.


2009 ◽  
Vol 4 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Vijayalaxmi J ◽  
S.P Sekar

In a hot-humid tropical climate, indoor thermal performance can be enhanced by comfort ventilation. Indoor ventilation depends upon building opening size. But risks involved in providing openings include ingress of mosquitoes and insects which thrive in the tropical climate. A practical and prevalent option to prevent insects in ventilated dwellings of the tropical, hot-humid city of Chennai, India is through the use of fly screens. Fly screens, when used over openings, prevent a certain quantum of solar radiation and wind from entering inside the rooms. Reduced direct solar radiation prevents the indoors from heating up, while reduced wind movement prevents the cross ventilation. Therefore, it is important to know the indoor thermal performance of ventilated rooms in the presence of fly screens with changing opening sizes. The criterion to evaluate indoor thermal performance in this paper is indoor air temperature. The aim of this research is to investigate the influence of fly screens on openings with varying sizes, in a naturally ventilated dwelling in the hot-humid climate of Chennai, India, during the summer period. The results of the study show that fly screens raise the indoor air temperature when openings are in the range of 100% to 35% of the room floor area. There is no significant change in the indoor air temperature when the opening sizes are less than 30% of the room floor area.


2015 ◽  
Vol 775 ◽  
pp. 44-49
Author(s):  
Yan Zou

The study analyzed the thermal performance of a sensible heat recovery system in an office building in Beijing area. Based on proposing the basic evaluation index of the thermal performance, the study analyzed the effect of outdoor temperature and wind speed on the heat recovery efficiency and the reduction of fresh air load. The analysis results show that, the operation effect of the sensible heat recovery device in winter is better. In winter, the sensible heat efficiency η is higher than 60%, the system has higher EER, and the fresh air load can be reduced more than 50%. While the sensible heat efficiency η is lower than 60% in most time in summer. And in a hot, humid climate, the recovery effect of sensible heat recovery device is significantly reduced.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zuzhong Li ◽  
Yayun Zhang ◽  
Chunguang Fa ◽  
Xiaoming Zou ◽  
Haiwei Xie ◽  
...  

Temperature is known to be one of the most important factors affecting the design and performance of asphalt concrete pavement. The distresses of asphalt overlay are closely related to its temperature, particularly in Guangxi, a hot-humid-climate region in China. This research is to analyze the impact of meteorological factors on temperature at 2 cm depth in asphalt overlay by ReliefF algorithm and also obtain the temperature prediction model using MATLAB. Two test sites were installed to monitor the temperatures at different pavement depths from 2014 to 2016; meanwhile, the meteorological data (including air temperature, solar radiation, wind speed, and relative humidity) were collected from the two meteorological stations. It has been found that the temperature at 2 cm depth experiences greater temperature variation, and the maximum and minimum temperatures of asphalt overlay, respectively, occur at 2 cm depth and on the surface. Besides, the results of ReliefF algorithm have also shown that the temperature at 2 cm depth is affected significantly by solar radiation, air temperature, wind speed, and the relative humidity. Based on these analyses, the prediction model of maximum temperature at 2 cm depth is developed using statistical regression. Moreover, the data collected in 2017 are used to validate the accuracy of the model. Compared with the existing models, the developed model was confirmed to be more effective for temperature prediction in hot-humid region. In addition, the analysis of rutting depth and overlay deformation for the two test sections with different materials is done, and the results have shown that reasonable structure and materials of asphalt overlay are vital to promote the high-temperature antideforming capability of pavement.


2012 ◽  
Vol 433-440 ◽  
pp. 1840-1844 ◽  
Author(s):  
Xiao Shan Fang ◽  
Zhen Yu Song

In building design, architects actively utilize all kinds of methods, such as ventilation and sunshade, to adapt to the hot-humid climate ,which is the main way to create a “green building ”.This paper describes the “climate adaptability ”design tactics in the case of the University Library in the Lingnan region——in a hot-humid climate. Furthermore, this paper gives suggestions by describing the advantages and disadvantages of the typical design practice in order to benefit regional architectural study.


2022 ◽  
Vol 23 (1) ◽  
pp. 64-72
Author(s):  
Mohammad Bani Khalid ◽  
Nabil Beithou ◽  
M.A.Sh. Al-Taani ◽  
Artur Andruszkiewicz ◽  
Ali Alahmer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document