Uniqueness theorem for Inverse Sturm–Liouville Problem with Nonseparated Boundary Conditions

2016 ◽  
Vol 11 (2) ◽  
pp. 167-170
Author(s):  
A.M. Akhtyamov ◽  
Kh.R. Mamedov

Consider the string, which vibrates in a medium with the variable elasticity coefficient q(x). Interesting to follow the inverse problem: is it possible to determine the variable elasticity coefficient q(x) by the natural frequencies of string vibrations. In 1946, G. Borg has been shown that a spectrum of frequencies is not sufficient to uniquely identify the medium elasticity coefficient q(x). He offered the use of two frequency spectrum to uniquely identify of the medium elasticity coefficient q(x). The second frequency spectrum is obtained by fastening the string to change at one of its ends to the other fastening. It was shown that these two frequency spectra already sufficient to uniquely identify q(x) and the boundary conditions of both problems. The case where the string fastening at one end depends on the other end fastening, is more difficult to solve. The boundary conditions, appropriate for the occasion, called nonseparated. Two spectra (of two boundary value problems) to restore both q(x), and the nonseparated boundary conditions are not enough. In modern studies the spectra of the two eigenvalues boundary problems and an infinite sequence of signs is generally used for an uniqueness recovery. While this approach is useful in theoretical mathematics, it is inconvenient for the mechanics, because not clear the physical meaning of the corresponding sequence of signs. In this article, instead of the two spectra and the sequence of signs as the spectral data are offered to use 7 of the eigenvalues of the initial boundary value problem, the spectrum, and the so-called norming constants of other boundary value problem. The physical sense of these data is quite clear. The first 7 eigenvalues of an initial boundary problem mean the first 7 natural frequencies of string vibrations. Norming constants represent norms from eigenfunctions. The spectrum and norming constants express a so-called spectral function. The spectral function gives a frequency spectrum with columns of vibrations amplitudes characteristics for string vibrations with other types of fastening.

2016 ◽  
Vol 11 (1) ◽  
pp. 38-52
Author(s):  
I.M. Utyashev ◽  
A.M. Akhtyamov

The paper discusses direct and inverse problems of oscillations of the string taking into account symmetrical characteristics of the external environment. In particular, we propose a modified method of finding natural frequencies using power series, and also the problem of identification of the boundary conditions type and parameters for the boundary value problem describing the vibrations of a string is solved. It is shown that to identify the form and parameters of the boundary conditions the two natural frequencies is enough in the case of a symmetric potential q(x). The estimation of the convergence of the proposed methods is done.


Author(s):  
Alexander N. Polkovnikov

We consider initial boundary value problem for uniformly 2-parabolic differential operator of second order in cylinder domain in Rn with non-coercive boundary conditions. In this case there is a loss of smoothness of the solution in Sobolev type spaces compared with the coercive situation. Using by Faedo-Galerkin method we prove that problem has unique solution in special Bochner space


Author(s):  
Sharif E. Guseynov ◽  
Ruslans Aleksejevs ◽  
Jekaterina V. Aleksejeva

In the present paper, we propose an analytical approach for solving the 3D unsteady-state boundary-value problem for the second-order parabolic equation with the second and third types boundary conditions in two-layer rectangular parallelepipedic domain.


2018 ◽  
Vol 15 (02) ◽  
pp. 349-374 ◽  
Author(s):  
Elena Rossi

We consider four definitions of solution to the initial-boundary value problem (IBVP) for a scalar balance laws in several space dimensions. These definitions are extended to the same most general framework and then compared. The first aim of this paper is to detail differences and analogies among them. We focus then on the ways the boundary conditions are fulfilled according to each definition, providing also connections among these various modes. The main result is the proof of the equivalence among the presented definitions of solution.


2013 ◽  
Vol 28 (22n23) ◽  
pp. 1340015 ◽  
Author(s):  
DAVID HILDITCH

These lecture notes accompany two classes given at the NRHEP2 school. In the first lecture I introduce the basic concepts used for analyzing well-posedness, that is the existence of a unique solution depending continuously on given data, of evolution partial differential equations. I show how strong hyperbolicity guarantees well-posedness of the initial value problem. Symmetric hyperbolic systems are shown to render the initial boundary value problem well-posed with maximally dissipative boundary conditions. I discuss the Laplace–Fourier method for analyzing the initial boundary value problem. Finally, I state how these notions extend to systems that are first-order in time and second-order in space. In the second lecture I discuss the effect that the gauge freedom of electromagnetism has on the PDE status of the initial value problem. I focus on gauge choices, strong-hyperbolicity and the construction of constraint preserving boundary conditions. I show that strongly hyperbolic pure gauges can be used to build strongly hyperbolic formulations. I examine which of these formulations is additionally symmetric hyperbolic and finally demonstrate that the system can be made boundary stable.


Author(s):  
John E. Lavery

AbstractA method for solving quasilinear parabolic equations of the typesthat differs radically from previously known methods is proposed. For each initial-boundary-value problem of one of these types that has boundary conditions of the first kind (second kind), a conjugate initial-boundary-value problem of the other type that has boundary conditions of the second kind (first kind) is defined. Based on the relations connecting the solutions of a pair of conjugate problems, a series of parabolic equations with constant coefficients that do not change step to step is constructed. The method proposed consists in calculating the solutions of the equations of this series. It is shown to have linear convergence. Results of a series of numerical experiments in a finite-difference setting show that one particular implementation of the proposed method has a smaller domain of convergence than Newton's method but that it sometimes converges faster within that domain.


1994 ◽  
Vol 9 (3) ◽  
pp. 563-569 ◽  
Author(s):  
J.R. Lloyd ◽  
J. Kitchin

The electromigration boundary value problem is investigated for the three physically reasonable boundary conditions, assuming a perfectly blocking boundary on one side. The solution to this problem is believed to be that for nucleation dominated electromigration lifetime. The three boundary conditions investigated are the semi-infinite constant vacancy source of Shatzkes and Lloyd,9 the closed system of De Groot13 and Kirchheim and Käber,19 and the heretofore unsolved constant vacancy source at a finite distance from the blocking boundary. It is argued that the first is unrealistic in that there is no length effect possible, which has been repeatedly observed experimentally. The second is argued to be too restrictive to account for failure, leaving the last as the most physically reasonable under most circumstances. The deceptively simple appearance of the boundary conditions belies a complex, double infinite series solution arrived at by a unique approach to inverting the Laplace transform of the solution. The solution correctly predicts the experimental observations of a length effect and, combined with the understanding provided by the solutions under the other two boundary conditions, the effect of a thick passivation layer on electromigration lifetime.


Sign in / Sign up

Export Citation Format

Share Document