scholarly journals Clinical Pathology and Treatment of Renin-Angiotensin System 4. Renin-Angiotensin System and Insulin Resistance

2007 ◽  
Vol 46 (16) ◽  
pp. 1303-1304 ◽  
Author(s):  
Kazuaki Shimamoto ◽  
Tetsuji Miura
2017 ◽  
Vol 1863 (5) ◽  
pp. 1106-1114 ◽  
Author(s):  
Latha Ramalingam ◽  
Kalhara Menikdiwela ◽  
Monique LeMieux ◽  
Jannette M. Dufour ◽  
Gurvinder Kaur ◽  
...  

2016 ◽  
Vol 50 (4) ◽  
pp. 229-240 ◽  
Author(s):  
M Slamkova ◽  
S Zorad ◽  
K Krskova

AbstractAdipose tissue expresses all the renin-angiotensin system (RAS) components that play an important role in the adipogenesis, lipid and glucose metabolism regulation in an auto/paracrine manner. The classical RAS has been found to be over-activated during the adipose tissue enlargement, thus elevated generation of angiotensin II (Ang II) may contribute to the obesity pathogenesis. The contemporary view on the RAS has become more complex with the discovery of alternative pathways, including angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor, (pro)renin receptor, as well as angiotensin IV(Ang IV)/AT4 receptor. Ang-(1-7) via Mas receptor counteracts with most of the deleterious effects of the Ang II-mediated by AT1 receptor implying its beneficial role in the glucose and lipid metabolism, oxidative stress, inflammation, and insulin resistance. Pro(renin) receptor may play a role (at least partial) in the pathogenesis of the obesity by increasing the local production of Ang II in adipose tissue as well as triggering signal transduction independently of Ang II. In this review, modulation of alternative RAS pathways in adipose tissue during obesity is discussed and the involvement of Ang-(1-7), (pro)renin and AT4 receptors in the regulation of adipose tissue homeostasis and insulin resistance is summarized.


2012 ◽  
Vol 302 (6) ◽  
pp. H1219-H1230 ◽  
Author(s):  
Kelly Putnam ◽  
Robin Shoemaker ◽  
Frederique Yiannikouris ◽  
Lisa A. Cassis

The renin-angiotensin system (RAS) is an important therapeutic target in the treatment of hypertension. Obesity has emerged as a primary contributor to essential hypertension in the United States and clusters with other metabolic disorders (hyperglycemia, hypertension, high triglycerides, low HDL cholesterol) defined within the metabolic syndrome. In addition to hypertension, RAS blockade may also serve as an effective treatment strategy to control impaired glucose and insulin tolerance and dyslipidemias in patients with the metabolic syndrome. Hyperglycemia, insulin resistance, and/or specific cholesterol metabolites have been demonstrated to activate components required for the synthesis [angiotensinogen, renin, angiotensin-converting enzyme (ACE)], degradation (ACE2), or responsiveness (angiotensin II type 1 receptors, Mas receptors) to angiotensin peptides in cell types (e.g., pancreatic islet cells, adipocytes, macrophages) that mediate specific disorders of the metabolic syndrome. An activated local RAS in these cell types may contribute to dysregulated function by promoting oxidative stress, apoptosis, and inflammation. This review will discuss data demonstrating the regulation of components of the RAS by cholesterol and its metabolites, glucose, and/or insulin in cell types implicated in disorders of the metabolic syndrome. In addition, we discuss data supporting a role for an activated local RAS in dyslipidemias and glucose intolerance/insulin resistance and the development of hypertension in the metabolic syndrome. Identification of an activated RAS as a common thread contributing to several disorders of the metabolic syndrome makes the use of angiotensin receptor blockers and ACE inhibitors an intriguing and novel option for multisymptom treatment.


Sign in / Sign up

Export Citation Format

Share Document