scholarly journals Effect of acute cold-exposure on norepinephrine turnover and thermogenesis in brown adipose tissue and metabolic rate in MSG-induced obese mice.

1989 ◽  
Vol 39 (6) ◽  
pp. 957-962 ◽  
Author(s):  
Keiji YOSHIOKA ◽  
Toshihide YOSHIDA ◽  
Motoharu KONDO
1989 ◽  
Vol 36 (4) ◽  
pp. 491-499 ◽  
Author(s):  
KEIJI YOSHIOKA ◽  
TOSHIHIDE YOSHIDA ◽  
YASUO WAKABAYASHI ◽  
HITOSHI NISHIOKA ◽  
MOTOHARU KONDO

1983 ◽  
Vol 244 (6) ◽  
pp. E567-E574 ◽  
Author(s):  
A. W. Knehans ◽  
D. R. Romsos

The possibility that low sympathetic nervous system (SNS) activity in brown adipose tissue (BAT) of 8-wk-old obese (ob/ob) mice results from their gross obesity at that age was investigated. Norepinephrine (NE) turnover, an estimator of SNS activity, was measured in BAT and other organs of 2-wk-old preobese ob/ob mice, and at 4 and 8 wk of age. Rates of NE turnover were 36% slower in BAT of preobese ob/ob mice than in lean littermates and remained slow in their BAT at 4 (-66%) and 8 (-56%) wk of age. In heart, rates of NE turnover were 48% slower in preobese ob/ob mice than in lean littermates, but the difference diminished at 4 (-21%) and 8 (-16%) wk of age. Rates of NE turnover in white adipose tissue, liver, and pancreas of obese mice were generally comparable with rates in these organs of lean mice. Effects of fasting (24 h) and acute cold exposure (14 degrees C for 8 h) were also examined. In general, fasting lowered and cold exposure elevated NE turnover equally in obese and lean mice. Ob/ob mice housed at 23-25 degrees C exhibit low SNS activity in their BAT prior to the onset of gross obesity, even though SNS activity in their BAT responds normally to an acute cold stress. This low SNS activity probably contributes to their subsequent high efficiency of energy retention.


1984 ◽  
Vol 4 (11) ◽  
pp. 933-940 ◽  
Author(s):  
Stewart W. Mercer ◽  
Paul Trayhurn

Genetically obese (ob/ob) mice develop insulin resistance in brown adipose tissue during the fifth week of life. Prior to this, at 26 days of age, oh/oh mice show a substantial increase in GDP binding to brownadipose-tissue mitochondria during acute cold exposure. When insulin resistance in brown fat develops, by 35 days of age, the increase in GDP binding in response to cold is markedly reduced. Studies with 2-deoxyglucose suggest that insulin resistance in brown adipose tissue could impair thermogenic responsiveness during acute cold exposure by limiting the ability of the tissue to take up glucose.


1984 ◽  
Vol 247 (2) ◽  
pp. R290-R295 ◽  
Author(s):  
J. S. Fisler ◽  
T. Yoshida ◽  
G. A. Bray

Catecholamine turnover in response to fasting, cold exposure, and a high-fat diet has been measured in the Osborne-Mendel rat, which readily develops obesity when fed a high-fat diet, and the S 5B/P1 rat, which does not. We have tested the hypothesis that this difference in response to diet might be associated with altered rates of norepinephrine or epinephrine turnover. The endogenous norepinephrine concentration in interscapular brown adipose tissue was significantly greater in fasted S 5B/P1 rats than in fasted Osborne-Mendel rats. The fractional norepinephrine turnover rate in interscapular brown adipose tissue of fasted animals was also greater in the S 5B/P1 rat than in the Osborne-Mendel rat. Cold exposure increased the fractional norepinephrine turnover rate in interscapular brown adipose tissue for both strains of rats but increased the fractional norepinephrine turnover rate in the pancreas in only the Osborne-Mendel rats. The turnover of epinephrine and the adrenal concentration of this hormone were not different between the two strains. Normal and high-fat diets were fed to both strains; the Osborne-Mendel rats were pair fed the high-fat diet to prevent excess weight gain. Endogenous concentrations of norepinephrine in interscapular brown adipose tissue was increased by the high-fat diet; the increase was greater in S 5B/P1 rats. The high-fat diet resulted in increased norepinephrine turnover in interscapular brown adipose tissue of the S 5B/P1 rat but not the Osborne-Mendel rat.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 222 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Abdoulaye Diané ◽  
Nikolina Nikolic ◽  
Alexander P Rudecki ◽  
Shannon M King ◽  
Drew J Bowie ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widely distributed neuropeptide that acts as a neurotransmitter, neuromodulator, neurotropic factor, neuroprotectant, secretagogue,and neurohormone. Owing to its pleiotropic biological actions, knockout ofPacap(Adcyap1) has been shown to induce several abnormalities in mice such as impaired thermoregulation. However, the underlying physiological and molecular mechanisms remain unclear. A previous report has shown that cold-exposedPacapnull mice cannot supply appropriate levels of norepinephrine (NE) to brown adipocytes. Therefore, we hypothesized that exogenous NE would rescue the impaired thermogenic response ofPacapnull mice during cold exposure. We compared the adaptive thermogenic capacity ofPacap−/−toPacap+/+mice in response to NE when housed at room temperature (24 °C) and after a 3.5-week cold exposure (4 °C). Biochemical parameters, expression of thermogenic genes, and morphological properties of brown adipose tissue (BAT) and white adipose tissue (WAT) were also characterized. Results showed that there was a significant effect of temperature, but no effect of genotype, on the resting metabolic rate in conscious, unrestrained mice. However, the normal cold-induced increase in the basal metabolic rate and NE-induced increase in thermogenesis were severely blunted in cold-exposedPacap−/−mice. These changes were associated with altered substrate utilization, reduced β3-adrenergic receptor (β3-Ar(Adrb3)) and hormone-sensitive lipase (Hsl(Lipe)) gene expression, and increased fibroblast growth factor 2 (Fgf2) gene expression in BAT. Interestingly,Pacap−/−mice had depleted WAT depots, associated with upregulated uncoupling protein 1 expression in inguinal WATs. These results suggest that the impairment of adaptive thermogenesis inPacapnull mice cannot be rescued by exogenous NE perhaps in part due to decreased β3-Ar-mediated BAT activation.


2020 ◽  
Author(s):  
Bruno Halpern ◽  
Marcio C Mancini ◽  
Caroline Mendes ◽  
Camila Maria Longo Machado ◽  
Silvana Prando ◽  
...  

Abstract Objective: Melatonin has been shown to increase brown adipose tissue (BAT) mass, which can lead to important metabolic effects, such as bodyweight reduction and glycemic improvement. However, BAT mass can only be measured invasively and. the gold standard for non-invasive measurement of BAT activity is positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG PET). There is no study, to our knowledge, that has evaluated if melatonin influences BAT activity, measured by this imaging technique in animals. Methods: Three experimental groups of Wistar rats (control, pinealectomy, and pinealectomy replaced with melatonin) had an 18F-FDG PET performed at room temperature and after acute cold exposure. The ratio of increased BAT activity after cold exposure/room temperature was called “acute thermogenic capacity” (ATC) We also measured UCP-1 mRNA expression to correlate with the 18F-FDG PET results. Results: Pinealectomy led to reduced acute thermogenic capacity, compared with the other groups, as well as reduced UCP1 mRNA expression.Conclusion: Melatonin deficiency impairs BAT response when exposed to acute cold exposure. These results can lead to future studies of the influence of melatonin on BAT, in animals and humans, without needing an invasive evaluation of BAT.


1984 ◽  
Vol 247 (2) ◽  
pp. E181-E189 ◽  
Author(s):  
L. Landsberg ◽  
M. E. Saville ◽  
J. B. Young

The sympathetic nervous system (SNS) plays a critical role in the regulation of mammalian thermogenic responses to cold exposure and dietary intake. Catecholamine-stimulated thermogenesis is mediated by the beta-adrenergic receptor. In the rat brown adipose tissue is the major site of metabolic heat production in response to both cold (nonshivering thermogenesis) and diet (diet-induced thermogenesis). Measurements of norepinephrine turnover rate in interscapular brown adipose tissue of the rat demonstrate increased sympathetic activity in response to both cold exposure and overfeeding. In adult humans, a physiologically significant role for brown adipose tissue has not been established but cannot be excluded. It appears likely that dietary changes in SNS activity are related, at least in part, to the changes in metabolic rate that occur in association with changes in dietary intake.


Sign in / Sign up

Export Citation Format

Share Document