scholarly journals Air Pollutant Emissions Projections for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies

2017 ◽  
Author(s):  
Ali Hasanbeigi ◽  
Nina Khanna ◽  
Lynn Price
2020 ◽  
Author(s):  
Jun Liu ◽  
Dan Tong ◽  
Yixuan Zheng ◽  
Jing Cheng ◽  
Xinying Qin ◽  
...  

Abstract. China is the largest cement producer and consumer in the world. Cement manufacturing is highly energy-intensive, and is one of the major contributors to carbon dioxide (CO2) and air pollutant emissions, which threatens climate mitigation and air quality improvement. In this study, we investigated the decadal changes of carbon dioxide and air pollutant emissions for the period of 1990–2015, based on intensive unit-based information on activity rates, production capacity, operation status, and control technologies, which improved the accuracy of the cement emissions in China. We found that, from 1990 to 2015, accompanied by a 10.9-fold increase in cement production, CO2, SO2, and NOx emissions from China's cement industry increased by 626 %, 59 %, and 658 %, whereas CO, PM2.5 and PM10 emissions decreased by 9 %, 66 %, and 63 %, respectively. In the 1990s, driven by the rapid growth of cement production, CO2 and air pollutant emissions increased constantly. Then, the production technology innovation of replacing traditional shaft kilns with the new precalciner kilns in the 2000s markedly reduced SO2, CO and PM emissions from the cement industry. Since 2010, the growing trend of emissions has been further curbed by a combination of measures, including promoting large-scale precalciner production lines and phasing out small ones, upgrading emission standards, installing low-NOx burners (LNB) and selective noncatalytic reduction (SNCR) to reduce NOx emissions, as well as adopting more advanced particulate matter control technologies. Our study highlighted the effectiveness of advanced technologies on air pollutant emission control, however, CO2 emissions from China's cement industry kept growing throughout the period, posing challenges to future carbon emission mitigation in China.


2019 ◽  
Vol 14 (4) ◽  
pp. 044018 ◽  
Author(s):  
Amelia T Keyes ◽  
Kathleen F Lambert ◽  
Dallas Burtraw ◽  
Jonathan J Buonocore ◽  
Jonathan I Levy ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 35 ◽  
Author(s):  
Haitao Dai ◽  
Dawei Ma ◽  
Renbin Zhu ◽  
Bowen Sun ◽  
Jun He

Anhui is one of the highest provincial emitters of air pollutants in China due to its large coal consumption in coal-fired plants. In this study, the total emissions of nitrogen oxides (NOx), sulfur dioxide (SO2) and particulate matter (PM) from coal-fired power plants in Anhui were investigated to assess the impact of control measures on the atmospheric emissions based upon continuous emission monitoring systems (CEMS). The total NOx, SO2 and PM emissions significantly decreased from 2013 to 2017 and they were estimated at 24.5 kt, 14.8 kt and 3.0 kt in 2017, respectively. The emission reductions of approximately 79.0%, 70.1% and 81.2% were achieved in 2017 compared with a 2013 baseline, respectively, due to the application of high-efficiency emission control measures, including the desulfurization, denitration and dust-removing devices and selective catalytic reduction (SCR). The NOx, SO2 and PM emission intensities were 0.125 g kWh−1, 0.076 g kWh−1 and 0.015 g kWh−1 in 2017, respectively, which were lower than the average of national coal-fired units. The coal-fired units with ≥600 MW generated 80.6% of the total electricity amount while they were estimated to account for 70.5% of total NOx, 70.1% of total SO2 and 71.9% of total PM. Their seasonal emissions showed a significant correlation to the power generation with the maximum correlation found in summer (July and August) and winter (January and December). The major regional contributors are the cities along the Huai River Basin and Yangtze River Basin, such as Huainan, Huaibei, Tongling, Maanshan and Wuhu, and the highest emission occurred in Huainan, accounting for approximately 26–40% of total emission from all the power plants. Our results indicated that the application of desulfurization, denitration and dust-removing devices has played an important role in controlling air pollutant emissions from coal-fired power plants.


2021 ◽  
Vol 15 (2) ◽  
pp. 5-14
Author(s):  
Carmelia Mariana Dragomir Balanica ◽  
Ciprian Cuzmin ◽  
Cecilia Serban ◽  
Cristian Muntenita

Road transport, including accessibility and individual mobility is considered unanimously as a fundamental element of contemporary living. The study area is considering Braila County with a total population of around over 305,000. The area it is well served by 6 national roads, 27 county roads and 42 communal roads and contains some of the most heavily trafficked stretches of road in the Romania. The emissions analysed in this study CH4, CO, CO2, N2O, NH3, NOx, PM2.5 and PM10, were collected by the Agency for Environmental Protection Braila during 2015-2019 based on questionnaires according to EMEP/EEA air pollutant emission inventory guidebook. The highest level of pollutant emissions was recorded in 2017, more exactly 191714,5 Megatons. In this article we analysed five categories of pollution sources: Passenger car, Light commercial trucks, Heavy-duty vehicles, Motorcycles and Non - Road vehicles and other mobile equipment. With the exception of CO2, N2O and NH3, pollutant emissions decreased for the eight pollutants analysed.


2020 ◽  
Author(s):  
Yumi Kim

<p><span><span>Along with the development of new cities, the construction of LNG cogeneration plant in urban areas is being promoted, and the facility has been pointed out as one of the major air pollution sources along with many vehicles in urban areas. For example, the construction of a new administrative city in Korea has led to the relocation of major government buildings and the influx of more than 300,000 people. The city has a 530 MW power plant + 391 Gcal/h district heating facility. The facility released 294,835 kg and 325,381 kg of NOx annually in 2017 and 2018, respectively. When examining the impact, we analyzed the impact of air pollutants (PM<sub>2.5</sub>, O<sub>3</sub>, NO<sub>2</sub>, etc.) through CMAQ modeling. In addition, the impact prediction using AERMOD related to the release of carcinogenic air pollutants is estimated to be no more than 10<sup>-5</sup> (risk level), but measurement and verification are required. In addition to concentration-based risk assessments, health impact assessments are needed that consider the number of populations exposed. In this study, QGIS was used to calculate population. In conclusion, even if the same LNG power plant is constructed, the LNG cogeneration plant located adjacent to a large residential facility requires air pollutant management measures according to the exposure population by radius of influence</span></span></p><p> </p>


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 695
Author(s):  
Marek Bogacki ◽  
Robert Oleniacz ◽  
Mateusz Rzeszutek ◽  
Paulina Bździuch ◽  
Adriana Szulecka ◽  
...  

One of the elements of strategy aimed at minimizing the impact of road transport on air quality is the introduction of its reorganization resulting in decreased pollutant emissions to the air. The aim of the study was to determine the optimal strategy of corrective actions in terms of the air pollutant emissions from road transport. The study presents the assessment results of the emission reduction degree of selected pollutants (PM10, PM2.5, and NOx) as well as the impact evaluation of this reduction on their concentrations in the air for adopted scenarios of the road management changes for one of the street canyons in Krakow (Southern Poland). Three scenarios under consideration of the city authorities were assessed: narrowing the cross-section of the street by eliminating one lane in both directions, limiting the maximum speed from 70 km/h to 50 km/h, and allowing only passenger and light commercial vehicles on the streets that meet the Euro 4 standard or higher. The best effects were obtained for the variant assuming banning of vehicles failing to meet the specified Euro standard. It would result in a decrease of the yearly averaged PM10 and PM2.5 concentrations by about 8–9% and for NOx by almost 30%.


2021 ◽  
Vol 21 (11) ◽  
pp. 8693-8708
Author(s):  
Zhe Jiang ◽  
Hongrong Shi ◽  
Bin Zhao ◽  
Yu Gu ◽  
Yifang Zhu ◽  
...  

Abstract. In response to the coronavirus disease of 2019 (COVID-19), California issued statewide stay-at-home orders, bringing about abrupt and dramatic reductions in air pollutant emissions. This crisis offers us an unprecedented opportunity to evaluate the effectiveness of emission reductions in terms of air quality. Here we use the Weather Research and Forecasting model with Chemistry (WRF-Chem) in combination with surface observations to study the impact of the COVID-19 lockdown measures on air quality in southern California. Based on activity level statistics and satellite observations, we estimate the sectoral emission changes during the lockdown. Due to the reduced emissions, the population-weighted concentrations of fine particulate matter (PM2.5) decrease by 15 % in southern California. The emission reductions contribute 68 % of the PM2.5 concentration decrease before and after the lockdown, while meteorology variations contribute the remaining 32 %. Among all chemical compositions, the PM2.5 concentration decrease due to emission reductions is dominated by nitrate and primary components. For O3 concentrations, the emission reductions cause a decrease in rural areas but an increase in urban areas; the increase can be offset by a 70 % emission reduction in anthropogenic volatile organic compounds (VOCs). These findings suggest that a strengthened control on primary PM2.5 emissions and a well-balanced control on nitrogen oxides and VOC emissions are needed to effectively and sustainably alleviate PM2.5 and O3 pollution in southern California.


2013 ◽  
Vol 734-737 ◽  
pp. 3042-3047
Author(s):  
Wei Xiao ◽  
Qing Qi Wei

The shipping emissions estimation method is the premise and basis of making shipping emissions inventory, assessing the impact of shipping emissions, and promoting the work of energy saving and emissions reduction in transportation industry. The article analyzed the three main kinds of current representative shipping emissions estimation methods, i.e. simplified methodology and detailed methodology for estimating air pollutant emissions from ships presented by Techne Consulting, Tier1 and Tier2 methods from IPCC, and default approach, technology specific approach and ship movement methodology proposed by EMEP. Based on a comparative analysis of the characteristics of these estimation methods and their applicability, it was shown that: (1) the three kinds of methods from Techne Consulting, IPCC and EMEP are essentially the same, that is the emission equals to the product of the level of activities and emission factors, the difference lies in the level of detail of the activities are broken down; (2) the three shipping emissions calculation methods proposed by EMEP can be considered as the comprehensive and representative method, the default approach is a top-down method, and the technology specific approach and ship movement methodology are bottom-up approaches; (3) different methods have different applicability, the default approach proposed by EMEP is recommended to estimate CO2, SO2 emissions from shipping, and the technology specific approach and ship movement methodology are suitable for estimating the emissions of the other pollutants.


Sign in / Sign up

Export Citation Format

Share Document