scholarly journals Leveraging a Fundamental Understanding of Fracture Flow, Dynamic Permeability Enhancement, and Induced Seismicity to Improve Geothermal Energy Production

2014 ◽  
Author(s):  
Chris Marone
2021 ◽  
pp. 016224392110345
Author(s):  
James Maguire

This paper explores an informal acoustic method developed by a group of industrial geologists working in geothermal energy landscapes in the southwest of Iceland. Through a series of ethnographic descriptions, this paper renders the work these geologists carry out in sonic terms, emphasizing how they use their bodies as sonic detectors in the production of geological evidence. Sound, the paper argues, is what allows geologists to make the intractable problem of volcanic cooling doable. It does this by differentiating two forms of evidence. Primary evidence, which ends up as data in geological reports, and secondary sonic evidence, which is what establishes that this primary evidence is, in fact, evidence. The paper introduces the concept data echoes as a way to think about how sound articulates between these evidential protocols. As echo, sound works as an outside, which, while remaining external to official protocols of knowledge production, nevertheless helps to constitute distinctions that are meaningful to the production of those categories. As data echoes through the various moments of data capture, analysis, and model building, sound’s temporal form helps to predict the time frame of volcanic cooling, as it affects both the immediate energy production scenarios and the long durée of volcanic time.


2021 ◽  
pp. 875529302198972
Author(s):  
Amin Amirlatifi ◽  
Bijay KC ◽  
Meisam Adibifard ◽  
Farshid Vahedifard ◽  
Ehsan Ghazanfari

The number of recorded earthquakes in Oklahoma has substantially increased during the last few decades, a trend that coincides with the increases in the injected volume in underground injection control (UIC) wells. Several studies have suggested the existence of spatial and temporal links between earthquakes and injection wells. However, creating a spatial connection between the earthquakes and UIC wells requires making a prior assumption about the radius of induced seismicity. In this study, we use intrinsic features of the UIC wells to find the cohort of wells with associated earthquakes, based on the level of activity and proximity of the wells to the events. For this purpose, a hybrid genetic algorithm–K-means (GA-K-means) algorithm was applied over UIC wells, and the geographical representation of the clustered wells was co-visualized with earthquake data to determine wells with induced seismic activities. The analysis was performed every year since 2002, and the most critical attributes to distinguish the behavior of wells were identified. The analysis showed a distinct change in cluster identifiers before the year 2010, which is believed to be the beginning of increased seismic activities, compared to later dates. Our approach was able to group the earthquake-associated wells from the rest of the data, and centroid analysis of these wells helped us identify the critical pressure and cumulative volume range that result in induced seismicity. These findings can be used as guidelines for designing safer injection sites for sustainable energy production in Oklahoma.


2021 ◽  
Author(s):  
David Healy ◽  
Stephen Hicks

Abstract. The operations needed to decarbonise our energy systems increasingly involve faulted rocks in the subsurface. To manage the technical challenges presented by these rocks and the justifiable public concern over induced seismicity, we need to assess the risks. Widely used measures for fault stability, including slip and dilation tendency and fracture susceptibility, can be combined with Response Surface Methodology from engineering and Monte Carlo simulations to produce statistically viable ensembles for the analysis of probability. In this paper, we describe the implementation of this approach using custom-built open source Python code (pfs – probability of fault slip). The technique is then illustrated using two synthetic datasets and two case studies drawn from active or potential sites for geothermal energy in the UK, and discussed in the light of induced seismicity focal mechanisms. The analysis of probability highlights key gaps in our knowledge of the stress field, fluid pressures and rock properties. Scope exists to develop, integrate and exploit citizen science projects to generate more and better data, and simultaneously include the public in the necessary discussions about hazard and risk.


Sign in / Sign up

Export Citation Format

Share Document