scholarly journals Spot size and effective focal length measurements for a fast axial flow CO{sub 2} laser

1997 ◽  
Author(s):  
R.J. Steele ◽  
P.W. Fuerschbach ◽  
D.O. MacCallum
1997 ◽  
Author(s):  
Robert J. Steele ◽  
Phillip W. Fuerschbach ◽  
Danny O. MacCallum

Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


1969 ◽  
Vol 41 (2) ◽  
pp. 424-430 ◽  
Author(s):  
Yasukazu Tanaka

With pinacyanol as the supravital stain, a preferential effect on mitochondria of KB cells was achieved by the irradiation with the ruby laser beam. The observation confirmed the results of other workers using janus green B in the same experimental system. The preferential effect on mitochondria was noted in the area extending 8–10 µ beyond the nonpreferential damage of 4–5 µ in diameter. The opaque material associated with mitochondria possibly represented coagulated protein. The effect involved cristae mitochondriales without severe disarrangement of their structure. The opaque material could be interpreted as the result of direct interaction between mitochondria and the laser beam, even though the mitochondria were noted outside of the previously estimated focal spot size of about 3 µ Within the thickness of 2–4 µ of monolayered cells, larger areas of damage can be accounted for by divergence of the beam which is focused by a microscope objective of very short focal length. A threshold of biologic effectiveness is probably also involved.


2011 ◽  
Vol 110-116 ◽  
pp. 4145-4148
Author(s):  
Johanna Mae M. Indias ◽  
Clark Kendrick C. Go

A Ray Transfer Matrix (RTM) of a variable-focus elastomeric fluidic lens is explored and modeled in this paper. A HeNe (543.45nm wavelength) laser is incident on the tunable lens and the effective focal length changes are explored based on this model. Results show that there are two possible focal lengths and that focal lengths are independent of the elastomer thickness.


2014 ◽  
Vol 7 (2) ◽  
pp. 293-300
Author(s):  
李刚 LI Gang ◽  
杨晓许 YANG Xiao-xu ◽  
张恒金 ZHANG Heng-jin ◽  
孙东岩 SUN Dong-yan

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 404 ◽  
Author(s):  
Hyuk Jae Jang ◽  
Yeong Jae Kim ◽  
Young Jin Yoo ◽  
Gil Ju Lee ◽  
Min Seok Kim ◽  
...  

Anti-reflection coatings (ARCs) from the cornea nipple array of the moth-eye remarkably suppress the Fresnel reflection at the interface in broadband wavelength ranges. ARCs on flat glass have been studied to enhance the optical transmittance. However, little research on the implementation of ARCs on curved optical lenses, which are the core element in imaging devices, has been reported. Here, we report double-sided, bio-inspired ARCs on bi-convex lenses with high uniformity. We theoretically optimize the nanostructure geometry, such as the height, period, and morphology, since an anti-reflection property results from the gradually changed effective refractive index by the geometry of nanostructures. In an experiment, the transmittance of an ARCs lens increases up to 10% for a broadband spectrum without distortion in spot size and focal length. Moreover, we demonstrate ~30% improved transmittance of an imaging system composed of three bi-convex lenses, in series with double-sided ARCs (DARCs).


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jean-Michel Romano ◽  
Rajib Ahmed ◽  
Antonio Garcia-Giron ◽  
Pavel Penchev ◽  
Haider Butt ◽  
...  

Functionalized metallic nanofeatures can be selectively fabricated via ultrashort laser processing; however, the cost-effective large-area texturing, intrinsically constrained by the diffraction limit of light, remains a challenging issue. A high-intensity near-field phenomenon that takes place when irradiating microsized spheres, referred to as photonic nanojet (PN), was investigated in the transitional state between geometrical optics and dipole regime to fabricate functionalized metallic subwavelength features. Finite element simulations were performed to predict the PN focal length and beam spot size, and nanofeature formation. A systematic approach was employed to functionalize metallic surface by varying the pulse energy, focal offset, and number of pulses to fabricate controlled array of nanoholes and to study the generation of triangular and rhombic laser-induced periodic surface structures (LIPSS). Finally, large-area texturing was investigated to minimize the dry laser cleaning (DLC) effect and improve homogeneity of PN-assisted texturing. Tailored dimensions and densities of achievable surface patterns could provide hexagonal light scattering and selective optical reflectance for a specific light wavelength. Surfaces exhibited controlled wetting properties with either hydrophilicity or hydrophobicity. No correlation was found between wetting and microbacterial colonization properties of textured metallic surfaces after 4 h incubation of Escherichia coli. However, an unexpected bacterial repellency was observed.


Sign in / Sign up

Export Citation Format

Share Document