scholarly journals FY-2001 Accomplishments in Off-gas Treatment Technology Development

2001 ◽  
Author(s):  
Douglas William Marshall

2013 ◽  
Vol 864-867 ◽  
pp. 88-95 ◽  
Author(s):  
Zhi Jiao Liu ◽  
Yun Lng Yang

Coal coking wastewater is generated from coking, coal gas purification and coking product recovery process, its composition is complex and difficult to degrade. By introducing the coking wastewater treatment research and application, such as adsorption,coagulation and sedimentation, flue gas treatment and other physical methods, as well advanced oxidation, wet oxidation, Fenton reagent method, photocatalytic oxidation, ultrasonic oxidation, ozone oxidation method, electrochemical oxidation, supercritical water oxidation, incineration and plasma technology, this paper puts forward the trend of coking wastewater treatment technology.



2022 ◽  
pp. 0734242X2110701
Author(s):  
Roland Berger ◽  
Joachim Lehner

It is a well-established fact that the quality and quantity of landfill gas (LFG) start declining after a landfill is closed to further waste intake. Conventional gas treatment and utilisation systems such as flares and gas-driven engines require a certain quality of LFG: specifically, a sufficient methane concentration. Various measures are utilised to maintain the necessary quality of LFG, including a turn-down of gas extraction rates and a shutdown of low-quality gas wells, resulting in a decline of LFG production. This, however, does not have to be the case. The low calorific value (LCV) LFG capture and treatment technology developed by e-flox and referred to in this article as ‘LCV LFG System’ can significantly increase the collection rate and the amount of treated methane in an old landfill. This article introduces such new treatment measures, describes gas capture calculation methodologies and presents actual results based on a medium-sized landfill in Germany. The study demonstrates, among other things, that the LCV LFG system can reduce the CO2 avoidance costs to roughly 10 €/tCO2eq. We present this new technology as a quick and straightforward measure of dealing with the climate issues related to methane emissions of old landfills.



Author(s):  
Viktor Mann ◽  
Vitaly Pingin ◽  
Aleksey Zherdev ◽  
Sergey Pavlov ◽  
Yuri Bogdanov


1996 ◽  
Author(s):  
C.D. Carlson ◽  
L.A. Bray ◽  
S.R. Adami ◽  
S.A. Bryan


Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 689-695 ◽  
Author(s):  
Janusz Licki ◽  
Andrzej Pawelec ◽  
Zbigniew Zimek ◽  
Sylwia Witman-Zając

Abstract The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.



2021 ◽  
Author(s):  
Amanda L. Ciosek ◽  
Grace K. Luk

This study investigates the design and performance of a novel sorption system containing natural zeolite. The apparatus consists of packed, fixed-bed, dual-columns with custom automated controls and sampling chambers, connected in series and stock fed by a metering pump at a controlled adjustable distribution. The purpose of the system is to remove heavy metallic ions predominately found in acid mine drainage, including lead (Pb2+), copper (Cu2+), iron (Fe3+), nickel (Ni2+) and zinc (Zn2+), combined in equal equivalence to form an acidified total 10 meq/L aqueous solution. Reported trends on the zeolite’s preference to these heavy metallic ions is established in the system breakthrough curve, as Pb2+ >> Fe3+ > Cu2+ > Zn2+ >> Ni2+. Within a 3-h contact period, Pb2+ is completely removed from both columns. Insufficient Ni2+ removal is achieved by either column with the promptest breakthrough attained, as zeolite demonstrates the least affinity towards it; however, a 48.97% removal is observed in the cumulative collection at the completion of the analysis period. The empty bed contact times for the first and second columns are 20 and 30 min, respectively; indicating a higher bed capacity at breakthrough and a lower usage rate of the zeolite mineral in the second column. This sorption system experimentally demonstrates the potential for industrial wastewater treatment technology development. Keywords: zeolite; sorption; packed fixed-bed columns; heavy metallic ions; automated sampling design



2013 ◽  
Vol 807-809 ◽  
pp. 1190-1193
Author(s):  
Qing Chen Shang

Industrialization combined with Urbanization makes city an industrial center as well as a core pollution source, which becomes the key for present pollution treatment. In this paper, the relationship between was cost of waste gas treatment and industrial scale for a city is investigated. By regression analysis, its found that pollution treatment technology is no obviously different in main cities of China so far, rough pollution treatment is still the main treatment way which will be more efficient when the pollution treatment volume reaches some scale.



Sign in / Sign up

Export Citation Format

Share Document