scholarly journals Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm

2010 ◽  
Author(s):  
S Wharton ◽  
J Lundquist

2006 ◽  
Vol 128 (4) ◽  
pp. 531-538 ◽  
Author(s):  
Jonathon Sumner ◽  
Christian Masson

The impact of atmospheric stability on vertical wind profiles is reviewed and the implications for power performance testing and site evaluation are investigated. Velocity, temperature, and turbulence intensity profiles are generated using the model presented by Sumner and Masson. This technique couples Monin-Obukhov similarity theory with an algebraic turbulence equation derived from the k-ϵ turbulence model to resolve atmospheric parameters u*, L, T*, and z0. The resulting system of nonlinear equations is solved with a Newton-Raphson algorithm. The disk-averaged wind speed u¯disk is then evaluated by numerically integrating the resulting velocity profile over the swept area of the rotor. Power performance and annual energy production (AEP) calculations for a Vestas Windane-34 turbine from a wind farm in Delabole, England, are carried out using both disk-averaged and hub height wind speeds. Although the power curves generated with each wind speed definition show only slight differences, there is an appreciable impact on the measured maximum turbine efficiency. Furthermore, when the Weibull parameters for the site are recalculated using u¯disk, the AEP prediction using the modified parameters falls by nearly 5% compared to current methods. The IEC assumption that the hub height wind speed can be considered representative tends to underestimate maximum turbine efficiency. When this assumption is further applied to energy predictions, it appears that the tendency is to overestimate the site potential.



2019 ◽  
pp. 0309524X1988092
Author(s):  
Mohamed Marouan Ichenial ◽  
Abdellah El-Hajjaji ◽  
Abdellatif Khamlichi

The assessment of climatological site conditions, airflow characteristics, and the turbulence affecting wind turbines is an important phase in developing wake engineering models. A method of modeling atmospheric boundary layer structure under atmospheric stability effects is crucial for accurate evaluation of the spatial scale of modern wind turbines, but by themselves, they are incapable to account for the varying large-scale weather conditions. As a result, combining lower atmospheric models with mesoscale models is required. In order to realize a reasonable approximation of initial atmospheric inflow condition used for wake identification behind an NREL 5-MW wind turbine, different vertical wind profile models on equilibrium conditions are tested and evaluated in this article. Wind farm simulator solvers require massive computing resources and forcing mechanisms tendencies inputs from weather forecast models. A three-dimensional Flow Redirection and Induction in Steady-state engineering model was developed for simulating and optimizing the wake losses of different rows of wind turbines under different stability stratifications. The obtained results were compared to high-fidelity simulation data generated by the famous Simulator for Wind Farm Applications. This work showed that a significant improvement related to atmospheric boundary layer structure can be made to develop accurate engineering wake models in order to reduce wake losses.



Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1805 ◽  
Author(s):  
Mohsen Vahidzadeh ◽  
Corey D. Markfort

Power curves are used to model power generation of wind turbines, which in turn is used for wind energy assessment and forecasting total wind farm power output of operating wind farms. Power curves are based on ideal uniform inflow conditions, however, as wind turbines are installed in regions of heterogeneous and complex terrain, the effect of non-ideal operating conditions resulting in variability of the inflow must be considered. We propose an approach to include turbulence, yaw error, air density, wind veer and shear in the prediction of turbine power by using high resolution wind measurements. In this study, two modified power curves using standard ten-minute wind speed and high resolution one-second data along with a derived power surface were tested and compared to the standard operating curve for a 2.5 MW horizontal axis wind turbine. Data from supervisory control and data acquisition (SCADA) system along with wind speed measurements from a nacelle-mounted sonic anemometer and wind speed measurements from a nearby meteorological tower are used in the models. The results show that all of the proposed models perform better than the standard power curve while the power surface results in the most accurate power prediction.



2017 ◽  
Vol 2 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Niko Mittelmeier ◽  
Julian Allin ◽  
Tomas Blodau ◽  
Davide Trabucchi ◽  
Gerald Steinfeld ◽  
...  

Abstract. For offshore wind farms, wake effects are among the largest sources of losses in energy production. At the same time, wake modelling is still associated with very high uncertainties. Therefore current research focusses on improving wake model predictions. It is known that atmospheric conditions, especially atmospheric stability, crucially influence the magnitude of those wake effects. The classification of atmospheric stability is usually based on measurements from met masts, buoys or lidar (light detection and ranging). In offshore conditions these measurements are expensive and scarce. However, every wind farm permanently produces SCADA (supervisory control and data acquisition) measurements. The objective of this study is to establish a classification for the magnitude of wake effects based on SCADA data. This delivers a basis to fit engineering wake models better to the ambient conditions in an offshore wind farm. The method is established with data from two offshore wind farms which each have a met mast nearby. A correlation is established between the stability classification from the met mast and signals within the SCADA data from the wind farm. The significance of these new signals on power production is demonstrated with data from two wind farms with met mast and long-range lidar measurements. Additionally, the method is validated with data from another wind farm without a met mast. The proposed signal consists of a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity (TI) when the wind turbines were operating in partial load. It allows us to distinguish between conditions with different magnitudes of wake effects. The proposed signal is very sensitive to increased turbulence induced by neighbouring turbines and wind farms, even at a distance of more than 38 rotor diameters.



Measurement ◽  
2016 ◽  
Vol 93 ◽  
pp. 178-188 ◽  
Author(s):  
Shuangyuan Wang ◽  
Yixiang Huang ◽  
Lin Li ◽  
Chengliang Liu


2016 ◽  
Vol 1 (2) ◽  
pp. 129-141 ◽  
Author(s):  
Lukas Vollmer ◽  
Gerald Steinfeld ◽  
Detlev Heinemann ◽  
Martin Kühn

Abstract. An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.



2016 ◽  
Author(s):  
Lukas Vollmer ◽  
Gerald Steinfeld ◽  
Detlev Heinemann ◽  
Martin Kühn

Abstract. An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty to the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as an uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. A control of the wake position in a highly convective environment is therefore not recommended.





Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.



Sign in / Sign up

Export Citation Format

Share Document