Protein-Protein Interactions and Prediction: A Comprehensive Overview

2013 ◽  
Vol 21 (8) ◽  
pp. 779-789 ◽  
Author(s):  
Gopichandran Sowmya ◽  
Shoba Ranganathan
Author(s):  
Trestan Pillonel ◽  
Florian Tagini ◽  
Claire Bertelli ◽  
Gilbert Greub

Abstract ChlamDB is a comparative genomics database containing 277 genomes covering the entire Chlamydiae phylum as well as their closest relatives belonging to the Planctomycetes-Verrucomicrobiae-Chlamydiae (PVC) superphylum. Genomes can be compared, analyzed and retrieved using accessions numbers of the most widely used databases including COG, KEGG ortholog, KEGG pathway, KEGG module, Pfam and InterPro. Gene annotations from multiple databases including UniProt (curated and automated protein annotations), KEGG (annotation of pathways), COG (orthology), TCDB (transporters), STRING (protein–protein interactions) and InterPro (domains and signatures) can be accessed in a comprehensive overview page. Candidate effectors of the Type III secretion system (T3SS) were identified using four in silico methods. The identification of orthologs among all PVC genomes allows users to perform large-scale comparative analyses and to identify orthologs of any protein in all genomes integrated in the database. Phylogenetic relationships of PVC proteins and their closest homologs in RefSeq, comparison of transmembrane domains and Pfam domains, conservation of gene neighborhood and taxonomic profiles can be visualized using dynamically generated graphs, available for download. As a central resource for researchers working on chlamydia, chlamydia-related bacteria, verrucomicrobia and planctomyces, ChlamDB facilitates the access to comprehensive annotations, integrates multiple tools for comparative genomic analyses and is freely available at https://chlamdb.ch/. Database URL: https://chlamdb.ch/


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuefei Wang ◽  
Duan Ni ◽  
Yaqin Liu ◽  
Shaoyong Lu

Protein-protein interactions (PPIs) are well-established as a class of promising drug targets for their implications in a wide range of biological processes. However, drug development toward PPIs is inevitably hampered by their flat and wide interfaces, which generally lack suitable pockets for ligand binding, rendering most PPI systems “undruggable.” Here, we summarized drug design strategies for developing peptide-based PPI inhibitors. Importantly, several quintessential examples toward well-established PPI targets such as Bcl-2 family members, p53-MDM2, as well as APC-Asef are presented to illustrate the detailed schemes for peptide-based PPI inhibitor development and optimizations. This review supplies a comprehensive overview of recent progresses in drug discovery targeting PPIs through peptides or peptidomimetics, and will shed light on future therapeutic agent development toward the historically “intractable” PPI systems.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

1974 ◽  
Vol 31 (03) ◽  
pp. 403-414 ◽  
Author(s):  
Terence Cartwright

SummaryA method is described for the extraction with buffers of near physiological pH of a plasminogen activator from porcine salivary glands. Substantial purification of the activator was achieved although this was to some extent complicated by concomitant extraction of nucleic acid from the glands. Preliminary characterization experiments using specific inhibitors suggested that the activator functioned by a similar mechanism to that proposed for urokinase, but with some important kinetic differences in two-stage assay systems. The lack of reactivity of the pig gland enzyme in these systems might be related to the tendency to protein-protein interactions observed with this material.


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


Sign in / Sign up

Export Citation Format

Share Document