Variable Length Character N-Gram Embedding of Protein Sequences for Secondary Structure Prediction

2020 ◽  
Vol 27 ◽  
Author(s):  
Ashish Kumar Sharma ◽  
Rajeev Srivastava

Background: The prediction of a protein's secondary structure from its amino acid sequence is an essential step towards predicting its 3-D structure. The prediction performance improves by incorporating homologous multiple sequence alignment information. Since homologous details not available for all proteins. Therefore, it is necessary to predict the protein secondary structure from single sequences. Objective and Methods: Protein secondary structure predicted from their primary sequences using n-gram word embedding and deep recurrent neural network. Protein secondary structure depends on local and long-range neighbor residues in primary sequences. In the proposed work, the local contextual information of amino acid residues captures variable-length character n-gram words. An embedding vector represents these variable-length character n-gram words. Further, the bidirectional long short-term memory (Bi-LSTM) model is used to capture the long-range contexts by extracting the past and future residues information in primary sequences. Results: The proposed model evaluates on three public datasets ss.txt, RS126, and CASP9. The model shows the Q3 accuracy of 92.57%, 86.48%, and 89.66% for ss.txt, RS126, and CASP9. Conclusion: The proposed model performance compares with state-of-the-art methods available in the literature. After a comparative analysis, it observed that the proposed model performs better than state-of-the-art methods.

2021 ◽  
Vol 11 (8) ◽  
pp. 3636
Author(s):  
Faria Zarin Subah ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.


2004 ◽  
Vol 02 (02) ◽  
pp. 333-342 ◽  
Author(s):  
WEI-MOU ZHENG

Simple hidden Markov models are proposed for predicting secondary structure of a protein from its amino acid sequence. Since the length of protein conformation segments varies in a narrow range, we ignore the duration effect of length distribution, and focus on inclusion of short range correlations of residues and of conformation states in the models. Conformation-independent and -dependent amino acid coarse-graining schemes are designed for the models by means of proper mutual information. We compare models of different level of complexity, and establish a practical model with a high prediction accuracy.


2021 ◽  
Author(s):  
Katarzyna Stapor ◽  
Krzysztof Kotowski ◽  
Tomasz Smolarczyk ◽  
Irena Roterman

Abstract Background: The importance of protein secondary structure (SS) prediction is widely known, its solution enables learning about the role of a protein in organisms. As the experimental methods are expensive and sometimes impossible, many SS predictors, mainly based on different machine learning methods have been proposed for many years. SS prediction as the imbalanced classification problem should not be judged by the commonly used Q3/Q8 metrics. Moreover, as the benchmark datasets are not random samples, the classical statistical null hypothesis testing based on the Neyman-Pearson approach is not appropriate. Also, the state-of-the-art predictors have usually relatively long prediction times.Results: We present a new deep network ProteinUnet2 for SS prediction which is based on U-Net convolutional architecture. We also propose a new statistical methodology for prediction performance assessment based on the significance from Fisher-Pitman permutation tests accompanied by practical significance measured by Cohen’s effect size. Through an extensive evaluation study, we report the performance of ProteinUnet2 in comparison with two state-of-the-art methods SAINT and SPOT-1D on benchmark datasets TEST2016, TEST2018, and CASP12. Conclusions: Our results suggest that ProteinUnet2 has much shorter prediction times while maintaining (or outperforming) the mentioned predictors. We strongly believe that our proposed statistical methodology will be adopted and used (and even expanded) by the research community.


2019 ◽  
Vol 36 (2) ◽  
pp. 470-477 ◽  
Author(s):  
Badri Adhikari

Abstract Motivation Exciting new opportunities have arisen to solve the protein contact prediction problem from the progress in neural networks and the availability of a large number of homologous sequences through high-throughput sequencing. In this work, we study how deep convolutional neural networks (ConvNets) may be best designed and developed to solve this long-standing problem. Results With publicly available datasets, we designed and trained various ConvNet architectures. We tested several recent deep learning techniques including wide residual networks, dropouts and dilated convolutions. We studied the improvements in the precision of medium-range and long-range contacts, and compared the performance of our best architectures with the ones used in existing state-of-the-art methods. The proposed ConvNet architectures predict contacts with significantly more precision than the architectures used in several state-of-the-art methods. When trained using the DeepCov dataset consisting of 3456 proteins and tested on PSICOV dataset of 150 proteins, our architectures achieve up to 15% higher precision when L/2 long-range contacts are evaluated. Similarly, when trained using the DNCON2 dataset consisting of 1426 proteins and tested on 84 protein domains in the CASP12 dataset, our single network achieves 4.8% higher precision than the ensembled DNCON2 method when top L long-range contacts are evaluated. Availability and implementation DEEPCON is available at https://github.com/badriadhikari/DEEPCON/.


2012 ◽  
Author(s):  
Satya Nanda Vel Arjunan ◽  
Safaai Deris ◽  
Rosli Md Illias

Dengan wujudnya projek jujukan DNA secara besar–besaran, teknik yang tepat untuk meramalkan struktur protein diperlukan. Masalah meramalkan struktur protein daripada jujukan DNA pada dasarnya masih belum dapat diselesaikan walaupun kajian intensif telah dilakukan selama lebih daripada tiga dekad. Dalam kertas kerja ini, teori asas struktur protein akan dibincangkan sebagai panduan umum bagi kajian peramalan struktur protein sekunder. Analisis jujukan terkini serta prinsip yang digunakan dalam teknik–teknik tersebut akan diterangkan. Kata kunci: Peramalan struktur sekunder protein; Rangkaian Neural In the wake of large-scale DNA sequencing projects, accurate tools are needed to predict protein structures. The problem of predicting protein structure from DNA sequence remains fundamentally unsolved even after more than three decades of intensive research. In this paper, fundamental theory of the protein structure will be presented as a general guide to protein secondary structure prediction research. An overview of the state–of–the–art in sequence analysis and some principles of the methods involved wil be described. Key words: Protein secondary structure prediction; Neural networks


Sign in / Sign up

Export Citation Format

Share Document