Nonhuman IAPP Variants Inhibit Human IAPP Aggregation

2021 ◽  
Vol 28 ◽  
Author(s):  
Alissa Oakes ◽  
Kate Menefee ◽  
Arleen Lamba ◽  
Larry M. Palato ◽  
Dillon J. Rinauro ◽  
...  

Aim: To identify naturally occurring variants of IAPP capable of inhibiting the aggregation of human IAPP and protecting living cells from the toxic effects of human IAPP. Background: The loss of insulin-producing β-cells and the overall progression of type 2 diabetes appears to be linked to the formation of toxic human IAPP (hIAPP, Islet Amyloid Polypeptide, amylin) amyloid in the pancreas. Inhibiting the initial aggregation of hIAPP has the potential to slow, if not stop entirely, the loss of β-cells and halt the progression of the disease. Objective: To identify and characterize naturally occurring variants of IAPP capable of inhibiting human IAPP aggregation. Methods: Synthetic human IAPP was incubated with synthetic IAPP variants identified from natural sources under conditions known to promote amyloid-based aggregation. To identify IAPP variants capable of inhibiting human IAPP aggregation, Thioflavin T-binding fluorescence, atomic force microscopy, and cell-rescue assays were performed. Results: While most IAPP variants showed little to no ability to inhibit human IAPP aggregation, several variants showed some ability to inhibit aggregation, with two variants showing substantial inhibitory potential. Conclusion: Several naturally occurring IAPP variants capable of inhibiting human IAPP aggregation were identified and characterized.

Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2082-2087 ◽  
Author(s):  
Cristina Alarcon ◽  
C. Bruce Verchere ◽  
Christopher J. Rhodes

Dysfunctional islet amyloid polypeptide (IAPP) biosynthesis and/or processing are thought contribute to formation of islet amyloid in type 2 diabetes. However, it is unclear how normal pro-IAPP biosynthesis and processing are regulated to be able to define such dysfunction. Here, it was found that acute exposure to high glucose concentrations coordinately regulated the biosynthesis of pro-IAPP, proinsulin, and its proprotein convertase PC1/3 in normal isolated rat islets, without affecting their respective mRNA levels. Pro-7B2 biosynthesis, like that of pro-PC2, did not appreciably change, but this was likely due to a much higher expression in pancreatic α-cells masking glucose regulation of their biosynthesis in β-cells. Biosynthesis of pro-SAAS, the putative PC1/3 chaperone, was unaffected by glucose, consistent with its scarce expression in β-cells. We conclude that translational control of pro-IAPP biosynthesis, in parallel to the pro-PC1/3, pro-PC2, and pro-7B2 proprotein-processing endopeptidases/chaperones, is the predominate mechanism to produce IAPP in islet β-cells.


2019 ◽  
Vol 476 (5) ◽  
pp. 889-907 ◽  
Author(s):  
Richa Dubey ◽  
Ketaki Patil ◽  
Sarath C. Dantu ◽  
Devika M. Sardesai ◽  
Parnika Bhatia ◽  
...  

Abstract The human islet amyloid polypeptide (hIAPP) or amylin is the major constituent of amyloidogenic aggregates found in pancreatic islets of type 2 diabetic patients that have been associated with β-cell dysfunction and/or death associated with type 2 diabetes mellitus (T2DM). Therefore, developing and/or identifying inhibitors of hIAPP aggregation pathway and/or compound that can mediate disaggregation of preformed aggregates holds promise as a medical intervention for T2DM management. In the current study, the anti-amyloidogenic potential of Azadirachtin (AZD)—a secondary metabolite isolated from traditional medicinal plant Neem (Azadirachta indica)—was investigated by using a combination of biophysical and cellular assays. Our results indicate that AZD supplementation not only inhibits hIAPP aggregation but also disaggregates pre-existing hIAPP fibrils by forming amorphous aggregates that are non-toxic to pancreatic β-cells. Furthermore, AZD supplementation in pancreatic β-cells (INS-1E) resulted in inhibition of oxidative stress; along with restoration of the DNA damage, lipid peroxidation and the associated membrane damage, endoplasmic reticulum stress and mitochondrial membrane potential. AZD treatment also restored glucose-stimulated insulin secretion from pancreatic islets exposed to hIAPP. All-atom molecular dynamics simulation studies on full-length hIAPP pentamer with AZD suggested that AZD interacted with four possible binding sites in the amyloidogenic region of hIAPP. In summary, our results suggest AZD to be a promising candidate for combating T2DM and related amyloidogenic disorders.


2011 ◽  
Vol 91 (3) ◽  
pp. 795-826 ◽  
Author(s):  
Per Westermark ◽  
Arne Andersson ◽  
Gunilla T. Westermark

Islet amyloid polypeptide (IAPP, or amylin) is one of the major secretory products of β-cells of the pancreatic islets of Langerhans. It is a regulatory peptide with putative function both locally in the islets, where it inhibits insulin and glucagon secretion, and at distant targets. It has binding sites in the brain, possibly contributing also to satiety regulation and inhibits gastric emptying. Effects on several other organs have also been described. IAPP was discovered through its ability to aggregate into pancreatic islet amyloid deposits, which are seen particularly in association with type 2 diabetes in humans and with diabetes in a few other mammalian species, especially monkeys and cats. Aggregated IAPP has cytotoxic properties and is believed to be of critical importance for the loss of β-cells in type 2 diabetes and also in pancreatic islets transplanted into individuals with type 1 diabetes. This review deals both with physiological aspects of IAPP and with the pathophysiological role of aggregated forms of IAPP, including mechanisms whereby human IAPP forms toxic aggregates and amyloid fibrils.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcos Penedo ◽  
Tetsuya Shirokawa ◽  
Mohammad Shahidul Alam ◽  
Keisuke Miyazawa ◽  
Takehiko Ichikawa ◽  
...  

AbstractOver the last decade, nanoneedle-based systems have demonstrated to be extremely useful in cell biology. They can be used as nanotools for drug delivery, biosensing or biomolecular recognition inside cells; or they can be employed to select and sort in parallel a large number of living cells. When using these nanoprobes, the most important requirement is to minimize the cell damage, reducing the forces and indentation lengths needed to penetrate the cell membrane. This is normally achieved by reducing the diameter of the nanoneedles. However, several studies have shown that nanoneedles with a flat tip display lower penetration forces and indentation lengths. In this work, we have tested different nanoneedle shapes and diameters to reduce the force and the indentation length needed to penetrate the cell membrane, demonstrating that ultra-thin and sharp nanoprobes can further reduce them, consequently minimizing the cell damage.


2018 ◽  
Vol 114 (3) ◽  
pp. 513a
Author(s):  
Yuri M. Efremov ◽  
Mirian Velay-Lizancos ◽  
Daniel M. Suter ◽  
Pablo D. Zavattieri ◽  
Arvind Raman

2004 ◽  
Vol 377 (3) ◽  
pp. 709-716 ◽  
Author(s):  
Emma T. A. S. JAIKARAN ◽  
Melanie R. NILSSON ◽  
Anne CLARK

Islet amyloid polypeptide (IAPP), or ‘amylin’, is co-stored with insulin in secretory granules of pancreatic islet β-cells. In Type 2 diabetes, IAPP converts into a β-sheet conformation and oligomerizes to form amyloid fibrils and islet deposits. Granule components, including insulin, inhibit spontaneous IAPP fibril formation in vitro. To determine the mechanism of this inhibition, molecular interactions of insulin with human IAPP (hIAPP), rat IAPP (rIAPP) and other peptides were examined using surface plasmon resonance (BIAcore), CD and transmission electron microscopy (EM). hIAPP and rIAPP complexed with insulin, and this reaction was concentration-dependent. rIAPP and insulin, but not pro-insulin, bound to hIAPP. Insulin with a truncated B-chain, to prevent dimerization, also bound hIAPP. In the presence of insulin, hIAPP did not spontaneously develop β-sheet secondary structure or form fibrils. Insulin interacted with pre-formed IAPP fibrils in a regular repeating pattern, as demonstrated by immunoEM, suggesting that the binding sites for insulin remain exposed in hIAPP fibrils. Since rIAPP and hIAPP form complexes with insulin (and each other), this could explain the lack of amyloid fibrils in transgenic mice expressing hIAPP. It is likely that IAPP fibrillogenesis is inhibited in secretory granules (where the hIAPP concentration is in the millimolar range) by heteromolecular complex formation with insulin. Alterations in the proportions of insulin and IAPP in granules could disrupt the stability of the peptide. The increase in the proportion of unprocessed pro-insulin produced in Type 2 diabetes could be a major factor in destabilization of hIAPP and induction of fibril formation.


Sign in / Sign up

Export Citation Format

Share Document