Adult Stem Cells and Biocompatible Scaffolds as Smart Drug Delivery Tools for Cardiac Tissue Repair

2013 ◽  
Vol 20 (28) ◽  
pp. 3429-3447 ◽  
Author(s):  
Stefania Pagliari ◽  
Sara Romanazzo ◽  
Diogo Mosqueira ◽  
Perpetua Pinto-do-O ◽  
Takao Aoyagi ◽  
...  
2020 ◽  
Vol 26 (15) ◽  
pp. 1637-1649 ◽  
Author(s):  
Imran Ali ◽  
Sofi D. Mukhtar ◽  
Heyam S. Ali ◽  
Marcus T. Scotti ◽  
Luciana Scotti

Background: Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors that have recently been developed and recommended for use by scientists because of their potential targeting capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery. Method: The present review article provides an overview of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors. Results: This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine, personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and perspectives, biodegradability and safety. Conclusions: This article will benefit academia, researchers, clinicians, and government authorities by providing a basis for further research advancements.


Polymer ◽  
2017 ◽  
Vol 110 ◽  
pp. 235-241 ◽  
Author(s):  
Yanfang Hu ◽  
Ming Deng ◽  
Huailin Yang ◽  
Li Chen ◽  
Chunsheng Xiao ◽  
...  

2021 ◽  
Vol 63 ◽  
pp. 102433
Author(s):  
Sakshi Phogat ◽  
Abhishek Saxena ◽  
Neha Kapoor ◽  
Charu Aggarwal ◽  
Archana Tiwari

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Peipei Xu ◽  
Huaqin Zuo ◽  
Bing Chen ◽  
Ruju Wang ◽  
Arsalan Ahmed ◽  
...  

2005 ◽  
Vol 17 (5) ◽  
pp. 634-637 ◽  
Author(s):  
J. H. Chang ◽  
C. H. Shim ◽  
B. J. Kim ◽  
Y. Shin ◽  
G. J. Exarhos ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1285
Author(s):  
Louise Van Gheluwe ◽  
Igor Chourpa ◽  
Coline Gaigne ◽  
Emilie Munnier

Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.


Sign in / Sign up

Export Citation Format

Share Document