The Significance of Oxidized Low-Density Lipoprotein in Body Fluids as a Marker Related to Diseased Conditions

2019 ◽  
Vol 26 (9) ◽  
pp. 1576-1593 ◽  
Author(s):  
Hiroyuki Itabe ◽  
Rina Kato ◽  
Naoko Sawada ◽  
Takashi Obama ◽  
Matsuo Yamamoto

Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of ox-LDL and LDL rather than oxLDL concentration alone has also been focused. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in the circulatory system.

Author(s):  
OMAR ABDULWAHID AL-ANI ◽  
ABDURRAHMAN AL-BAZZAZ

Objective: The importance of measuring the blood level of modified low-density lipoprotein (LDL) molecules is an effective method of identifying people at risk of coronary atherosclerosis; this is because, in the early stages of atherosclerosis, lipolysis and oxidative modification have a role in promoting the uptake of these lipids through macrophages; therefore, this research aims to measure the level of glycated LDL (Gly-LDL) in the blood and its association with metabolic parameters of diabetic patients (diabetes mellitus) and non-diabetic (hyperlipidemia). Methods: At a University Diabetes Center in Riyadh, we using routine automatic analysis methods, fasting serum samples were analyzed for 31 patients with Type-2 diabetes and 31 non-diabetic patients for LDL, high-density lipoprotein (HDL), total cholesterol, glycated hemoglobin, glucose, and triglycerides (TG), and using enzyme-linked immunosorbent assay to analyze Gly-LDL for the same sample. Results: The level of serum Gly-LDL in non-diabetic was higher than in diabetic patients (p=0.037). Gly-LDL level correlated significantly with LDL in the diabetic group (p=0.035) and was insignificant with other parameters; moreover, it is significantly correlated with HDL (p=0.048), TG (p=0.035), and very LDL (p=0.03) in the non-diabetic group and insignificant with other parameters. Conclusion: Measuring rates of Gly-LDL can be used in the early detection of cardiovascular disease, especially in people with diabetes, as they are more susceptible to modified and oxidized LDL.


1993 ◽  
Vol 218 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hualiang Wang ◽  
Sicong Chen ◽  
Xiantao Kong ◽  
Xiaoli Wang ◽  
Guoyuan Chang ◽  
...  

1989 ◽  
Vol 84 (4) ◽  
pp. 1086-1095 ◽  
Author(s):  
S Ylä-Herttuala ◽  
W Palinski ◽  
M E Rosenfeld ◽  
S Parthasarathy ◽  
T E Carew ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bushra Yusuf ◽  
Ilya Mukovozov ◽  
Sajedabanu Patel ◽  
Yi-Wei Huang ◽  
Guang Ying Liu ◽  
...  

AbstractAtherosclerosis is characterized by retention of modified lipoproteins, especially oxidized low density lipoprotein (oxLDL) within the sub-endothelial space of affected blood vessels. Recruited monocyte-derived and tissue-resident macrophages subsequently ingest oxLDL by binding and internalizing oxLDL via scavenger receptors, particularly CD36. The secreted neurorepellent, Slit2, acting through its transmembrane receptor, Roundabout-1 (Robo-1), was previously shown to inhibit recruitment of monocytes into nascent atherosclerotic lesions. The effects of Slit2 on oxLDL uptake by macrophages have not been explored. We report here that Slit2 inhibits uptake of oxLDL by human and murine macrophages, and the resulting formation of foam cells, in a Rac1-dependent and CD36-dependent manner. Exposure of macrophages to Slit2 prevented binding of oxLDL to the surface of cells. Using super-resolution microscopy, we observed that exposure of macrophages to Slit2 induced profound cytoskeletal remodeling with formation of a thick ring of cortical actin within which clusters of CD36 could not aggregate, thereby attenuating binding of oxLDL to the surface of cells. By inhibiting recruitment of monocytes into early atherosclerotic lesions, and the subsequent binding and internalization of oxLDL by macrophages, Slit2 could represent a potent new tool to combat individual steps that collectively result in progression of atherosclerosis.


2010 ◽  
Vol 2 (01) ◽  
pp. 025-030 ◽  
Author(s):  
Lorenzo Gordon ◽  
Dalip Ragoobirsingh ◽  
Errol Y St A Morrison ◽  
Eric Choo-Kang ◽  
Donovan McGrowder ◽  
...  

ABSTRACT Aims: Previous studies have shown that diabetes mellitus (DM) increases the risk of cardiovascular diseases in females to a greater extent than in males. In this cross-sectional study, we evaluated the lipid profiles of type 2 diabetic males and females. Materials and Methods: The study included 107 type 2 diabetic patients (41 males and 66 females), and 122 hypertensive type 2 diabetic patients (39 males and 83 females), aged 15 years and older. Total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C), very low density lipoprotein-cholesterol (VLDL-C) and high density lipoprotein-cholesterol (HDL-C) concentrations were assayed for each group using standard biochemical methods. Results: The mean TC, TG, VLDL-C, HDL-C and LDL-C concentrations, TG/HDL and LDL/HDL ratios were higher in type 2 diabetic and hypertensive type 2 diabetic patients compared with non-diabetic, and hypertensive non-diabetic control subjects, although these were not significant (P > 0.05). Hypertensive type 2 diabetic females had significantly higher serum TC (7.42 ± 1.63 mmol/L) than hypertensive non-diabetic males (5.76±1.57 mmol/L; P < 0.05). All the other lipid and lipoprotein parameters except HDL-C were non-significantly higher in females with type 2 DM and those with hypertension and type 2 DM, compared with type 2 diabetic and hypertensive type 2 diabetic males, respectively (P > 0.05). Conclusion: This study demonstrated that dyslipidemia exists in our type 2 diabetic population with greater TC in hypertensive type 2 diabetic females compared with hypertensive type 2 diabetic males. This suggests that hypertensive type 2 diabetic females are exposed more profoundly to risk factors including atherogenic dyslipidemia compared with males.


Sign in / Sign up

Export Citation Format

Share Document