Quantitation of plasma oxidatively modified low density lipoprotein by sandwich enzyme linked immunosorbent assay

1993 ◽  
Vol 218 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hualiang Wang ◽  
Sicong Chen ◽  
Xiantao Kong ◽  
Xiaoli Wang ◽  
Guoyuan Chang ◽  
...  
2019 ◽  
Vol 26 (9) ◽  
pp. 1576-1593 ◽  
Author(s):  
Hiroyuki Itabe ◽  
Rina Kato ◽  
Naoko Sawada ◽  
Takashi Obama ◽  
Matsuo Yamamoto

Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of ox-LDL and LDL rather than oxLDL concentration alone has also been focused. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in the circulatory system.


1995 ◽  
Author(s):  
Tami N. Glenn ◽  
Alexander A. Oraevsky ◽  
Frank K. Tittel ◽  
Sharon L. Thomsen ◽  
Steven L. Jacques ◽  
...  

1985 ◽  
Vol 31 (10) ◽  
pp. 1654-1658 ◽  
Author(s):  
S Marcovina ◽  
D France ◽  
R A Phillips ◽  
S J Mao

Abstract We produced 20 mouse monoclonal antibodies against human plasma low-density lipoprotein (LDL). Individually they failed to precipitate LDL in agarose gel by the double-immunodiffusion technique; collectively they did, or as few as two combined monoclonal antibodies could do so. To mimic polyclonal antibodies in determination of apolipoprotein B (apo B) by radial immunodiffusion, a combination of four particular monoclonal antibodies (clones A, B, C, and D) was necessary. We characterized these four clones with respect to temperature dependency, affinity, total binding to 125I-labeled LDL, and specificity to the different species of apolipoprotein B. Two monoclonal antibodies (B and C) bound 100% of 125I-labeled LDL; clones A and D bound 80% and 87%, respectively. All four clones bound maximally to LDL at 4 degrees C. The affinity constants for clones A, B, C, and D were 0.6, 2.1, 3.8, and 2.3 X 10(9) L/mol, respectively. By the Western blotting technique, the four monoclonal antibodies all reacted with the species B-100 and B-74 of apolipoprotein B, and to various degrees with B-48 and B-26. Radial immunodiffusion (chi) and direct enzyme-linked immunosorbent assay (y) with a mixture of the four monoclonal antibodies gave almost identical results for 70 patients: y = 0.921 chi-2.58; r = 0.933.


1990 ◽  
Vol 36 (2) ◽  
pp. 192-197 ◽  
Author(s):  
W L Wong ◽  
D L Eaton ◽  
A Berloui ◽  
B Fendly ◽  
P E Hass

Abstract Lipoprotein(a) [Lp(a)] is a low-density lipoprotein (LDL)-like lipoprotein particle recently described as a risk factor for premature coronary heart disease, stroke, and atherosclerosis. Structurally, Lp(a) is similar to LDL in that it has comparable lipid composition and contains apolipoprotein B-100 (apo B-100). In addition, Lp(a) contains the glycoprotein apolipoprotein(a) [apo(a)], which is disulfide-linked to apo B-100. The recent awareness of a striking correlation between atherosclerosis and concentrations of Lp(a) in plasma prompted our development of an accurate quantitative assay for plasma Lp(a), a monoclonal-antibody-based enzyme-linked immunosorbent assay for Lp(a) that is shown to be sensitive, precise, and highly specific. The response to several isoforms of Lp(a) is linear, and as many as 80 samples can be quantified on one plate. This easily performed assay is suitable for use in the clinical laboratory and for screening large populations.


Sign in / Sign up

Export Citation Format

Share Document