Current Development of Metal Complexes with Diamine Ligands as Potential Anticancer Agents

2020 ◽  
Vol 27 (3) ◽  
pp. 380-410 ◽  
Author(s):  
Sonja Misirlic-Dencic ◽  
Jelena Poljarevic ◽  
Andjelka M. Isakovic ◽  
Tibor Sabo ◽  
Ivanka Markovic ◽  
...  

Background:: The discovery of cisplatin and the subsequent research revealed the importance of dinitrogen-containing moiety for the anticancer action of metal complexes. Moreover, certain diamine ligands alone display cytotoxicity that contributes to the overall activity of corresponding complexes. Objective:: To summarize the current knowledge on the anticancer efficacy, selectivity, and the mechanisms of action of metal complexes with various types of diamine ligands. Method:: The contribution of aliphatic acyclic, aliphatic cyclic, and aromatic diamine ligands to the anticancer activity and selectivity/toxicity of metal complexes with different metal ions were analyzed by comparison with organic ligand alone and/or conventional platinum-based chemotherapeutics. Results:: The aliphatic acyclic diamine ligands are present mostly in complexes with platinum. Aliphatic cyclic diamines are part of Pt(II), Ru(II) and Au(III) complexes, while aromatic diamine ligands are found in Pt(II), Ru(II), Pd(II) and Ir(III) complexes. The type and oxidation state of metal ions greatly influences the cytotoxicity of metal complexes with aliphatic acyclic diamine ligands. Lipophilicity of organic ligands, dependent on alkyl-side chain length and structure, determines their cellular uptake, with edda and eddp/eddip ligands being most useful in this regard. Aliphatic cyclic diamine ligands improved the activity/toxicity ratio of oxaliplatin-type complexes. The complexes with aromatic diamine ligands remain unexplored regarding their anticancer mechanism. The investigated complexes mainly caused apoptotic or necrotic cell death. Conclusion:: Metal complexes with diamine ligands are promising candidates for efficient and more selective alternatives to conventional platinum-based chemotherapeutics. Further research is required to reveal the chemico-physical properties and molecular mechanisms underlying their biological activity.

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 381 ◽  
Author(s):  
Schmidt ◽  
Husted

Manganese (Mn) is an essential micronutrient with many functional roles in plant metabolism. Manganese acts as an activator and co-factor of hundreds of metalloenzymes in plants. Because of its ability to readily change oxidation state in biological systems, Mn plays and important role in a broad range of enzyme-catalyzed reactions, including redox reactions, phosphorylation, decarboxylation, and hydrolysis. Manganese(II) is the prevalent oxidation state of Mn in plants and exhibits fast ligand exchange kinetics, which means that Mn can often be substituted by other metal ions, such as Mg(II), which has similar ion characteristics and requirements to the ligand environment of the metal binding sites. Knowledge of the molecular mechanisms catalyzed by Mn and regulation of Mn insertion into the active site of Mn-dependent enzymes, in the presence of other metals, is gradually evolving. This review presents an overview of the chemistry and biochemistry of Mn in plants, including an updated list of known Mn-dependent enzymes, together with enzymes where Mn has been shown to exchange with other metal ions. Furthermore, the current knowledge of the structure and functional role of the three most well characterized Mn-containing metalloenzymes in plants; the oxygen evolving complex of photosystem II, Mn superoxide dismutase, and oxalate oxidase is summarized.


2017 ◽  
Vol 18 (3) ◽  
pp. 191-194 ◽  
Author(s):  
Slobodan Novokmet ◽  
Isidora Stojic ◽  
Katarina Radonjic ◽  
Maja Savic ◽  
Jovana Jeremic

Abstract Discovery of the metallopharmaceutical cisplatin and its use in antitumour therapy has initiated the rational design and screening of metal-based anticancer agents as potential chemotherapeutics. In addition to the achievements of cisplatin and its therapeutic analogues, there are significant drawbacks to its use: resistance and toxicity. Over the past four decades, numerous transition metal complexes have been synthesized and investigated in vitro and in vivo. The most studied metals among these complexes are platinum and ruthenium. The key features of these investigations is to find novel metal complexes that could potentially exert less toxicity and equal or higher antitumour potency and to overcome other pharmacological deficiencies. Ru complexes have a different mode of action than cisplatin does, some of which are under clinical trials for treating metastatic or cisplatin-resistant tumours. This review consists of the current knowledge, published and unpublished, related to the toxicity of metallopharmaceuticals, and special attention is given to platinum [Pt(II) and Pt(IV)] and ruthenium [Ru(II) and Ru(III)] complexes.


2019 ◽  
Vol 20 (15) ◽  
pp. 3612
Author(s):  
Laetitia Mouly ◽  
Julia Gilhodes ◽  
Anthony Lemarié ◽  
Elizabeth Cohen-Jonathan Moyal ◽  
Christine Toulas ◽  
...  

The Rho GTPase family can be classified into classic and atypical members. Classic members cycle between an inactive Guanosine DiPhosphate -bound state and an active Guanosine TriPhosphate-bound state. Atypical Rho GTPases, such as RND1, are predominantly in an active GTP-bound conformation. The role of classic members in oncogenesis has been the subject of numerous studies, while that of atypical members has been less explored. Besides the roles of RND1 in healthy tissues, recent data suggest that RND1 is involved in oncogenesis and response to cancer therapeutics. Here, we present the current knowledge on RND1 expression, subcellular localization, and functions in healthy tissues. Then, we review data showing that RND1 expression is dysregulated in tumors, the molecular mechanisms involved in this deregulation, and the role of RND1 in oncogenesis. For several aggressive tumors, RND1 presents the features of a tumor suppressor gene. In these tumors, low expression of RND1 is associated with a bad prognosis for the patients. Finally, we highlight that RND1 expression is induced by anticancer agents and modulates their response. Of note, RND1 mRNA levels in tumors could be used as a predictive marker of both patient prognosis and response to anticancer agents.


2020 ◽  
Vol 20 (2) ◽  
pp. 123-133 ◽  
Author(s):  
Yutao Xie ◽  
Yunlong Wang ◽  
Wei Xiang ◽  
Qiaoying Wang ◽  
Yajun Cao

Natural compounds, such as paclitaxel and camptothecin, have great effects on the treatment of tumors. Such natural chemicals often achieve anti-tumor effects through a variety of mechanisms. Therefore, it is of great significance to conduct further studies on the anticancer mechanism of natural anticancer agents to lay a solid foundation for the development of new drugs. Myricetin, originally isolated from Myrica nagi, is a natural pigment of flavonoids that can inhibit the growth of cancer cells (such as liver cancer, rectal cancer, skin cancer and lung cancer, etc.). It can regulate many intracellular activities (such as anti-inflammatory and blood lipids regulation) and can even be bacteriostatic. The purpose of this paper is to outline the molecular pathways of the anticancer effects of myricetin, including the effect on cancer cell death, proliferation, angiogenesis, metastasis and cell signaling pathway.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


Sign in / Sign up

Export Citation Format

Share Document