aromatic diamine
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 29)

H-INDEX

26
(FIVE YEARS 2)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 327
Author(s):  
Hang Xiao ◽  
Tao Li ◽  
Xiao-Li Sun ◽  
Wen-Ming Wan ◽  
Hongli Bao ◽  
...  

Pyrene molecules containing NBN-doped polycyclic aromatic hydrocarbons (PAHs) have been synthesized by a simple and efficient intermolecular dehydration reaction between 1-pyrenylboronic acid and aromatic diamine. Pyrene-B (o-phenylenediamine) with a five-membered NBN ring and pyrene-B (1,8-diaminonaphthalene) with a six-membered NBN ring show differing luminescence. Pyrene-B (o-phenylenediamine) shows concentration-dependent luminescence and enhanced emission after grinding at solid state. Pyrene-B (1,8-diaminonaphthalene) exhibits a turn-on type luminescence upon fluoride ion addition at lower concentration, as well as concentration-dependent stability. Further potential applications of Pyrene-B (o-phenylenediamine) on artificial light-harvesting film were demonstrated by using commercial NiR dye as acceptor.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4434
Author(s):  
Yawei Shi ◽  
Aijun Hu ◽  
Zhiyuan Wang ◽  
Kedi Li ◽  
Shiyong Yang

Closed-cell rigid polyimide foams with excellent thermal stability and combined properties were prepared by thermal foaming of a reactive end-capped polyimide precursor powder in a closed mold. The precursor powder was obtained by thermal treatment of a polyester-amine salt (PEAS) solution derived from the reaction of the diethyl ester of 2,3,3′,4′-biphenyl tetracarboxylic dianhydride (α-BPDE) with an aromatic diamine mixture of p-phenylenediamine (PDA) and 2-(4-aminophenyl)-5-aminobenzimidazole (BIA) in the presence of an end-capping agent (mono-ethyl ester of nadic acid anhydride, NE) in an aliphatic alcohol. The effect of polymer mainchain structures on the foaming processability and combined properties of the closed-cell rigid polyimide foams were systematically investigated. The polyimide foams (100–300 kg/m3) with closed-cell rates of 91–95% show an outstanding thermal stability with an initial thermal decomposition temperature of ≥490 °C and a glass transition temperature of 395 °C. Polyimide foams with density of 250 kg/m3 exhibited compression creep deformation as low as 1.6% after thermal aging at 320 °C/0.4 MPa for 2 h.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6730
Author(s):  
Bogdan M. Bosca ◽  
Augustin C. Mot

Herein, a method based on selective piazselenol formation is applied for total selenium determination in biofortified Allium species. Piazselenol is formed by reacting Se(IV) with an aromatic diamine, namely 4-nitro-1,2-phenylenediamine, in acidic medium. Samples were digested in a nitric acid/hydrogen peroxide open system, followed by selenate reduction in hydrochloric acid. Reaction conditions were optimized in terms of pH, temperature, reaction time, and other auxiliary reagents for interference removal, namely, EDTA and hydroxylamine. For the extraction of the selectively formed 4-nitro-piazselenol, micro-solid-phase extraction (μSPE) was applied, and the analysis and detection of the corresponding complex was performed by HPLC coupled with DAD. An external standard calibration curve was developed (R2 = 0.9994) with good sensitivity, and was used to calculate the total selenium content from several Allium plants material, with good intermediate precision (RSD% < 16%). The accuracy of the method was evaluated using both, a comparison with an accepted reference method from our previously published data, as well as three certified reference material with recoveries between 84–126%. The limit of detection was determined to be 0.35 μg/g (in solids) and 1.1 μg/L (in solution), while the limit of quantification was 1.07 μg/g and 3.4 μg/L (in solution). Using the proposed method, selenium content can be quickly and accurately determined in several types of samples. In addition, this study present experimental conditions for overcoming the interferences that might be encountered in selenium determination using piazselenol.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract Disazo condensation pigments were developed in the mid-twentieth century as a range of high-performance azo pigments to meet the stringent demands placed on the technical properties required for applications in growing markets such as automotive paints, plastics, and fibers. The commercial products vary in shade from yellow through red to brown. Structurally, the pigments are related to the classical yellow azoacetoacetanilides or red azonaphthols by synthetically connecting two monoazo derivatives by a condensation reaction involving an aromatic diamine. The resulting pigment molecules are of extremely large molecular size with the presence of several amide groups, factors that determine their excellent set of fastness properties. The procedures used in their manufacture involve complex and demanding multistage processes, and this explains the higher cost of these pigments. The application performance attributes provided by the individual commercial products are discussed in detail in the final section.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Yan Zhang ◽  
Hao Wu ◽  
Yi-dan Guo ◽  
Yan-bin Yang ◽  
Qiang Yu ◽  
...  

For the development of spacecraft with long-servicing life in low earth orbit (LEO), high-temperature resistant polymer films with long-term atomic oxygen (AO) resistant features are highly desired. The relatively poor AO resistance of standard polyimide (PI) films greatly limited their applications in LEO spacecraft. In this work, we successfully prepared a series of novel AO resistant PI composite films containing nanocaged polyhedral oligomeric silsesquioxane (POSS) components in both the PI matrix and the fillers. The POSS-containing PI matrix film was prepared from a POSS-substituted aromatic diamine, N-[(heptaisobutyl-POSS)propyl]-3,5-diaminobenzamide (DABA-POSS) and a common aromatic diamine, 4,4′-oxydianline (ODA) and the aromatic dianhydride, pyromellitic dianhydride (PMDA) by a two-step thermal imidization procedure. The POSS-containing filler, trisilanolphenyl POSS (TSP-POSS) was added with the fixed proportion of 20 wt% in the final films. Incorporation of TSP-POSS additive apparently improved the thermal stability, but decreased the high-temperature dimensional stable nature of the PI composite films. The 5% weight loss temperature (T5%) of POSS-PI-20 with 20 wt% of DABA-POSS is 564 °C, and its coefficient of linear thermal expansion (CTE) is 81.0 × 10−6/K. The former is 16 °C lower and the latter was 20.0 × 10−6/K higher than those of the POSS-PI-10 film (T5% = 580 °C, CTE = 61.0 × 10−6/K), respectively. POSS components endowed the PI composite films excellent AO resistance and self-healing characteristics in AO environments. POSS-PI-30 exhibits the lowest AO erosion yield (Es) of 1.64 × 10−26 cm3/atom under AO exposure with a flux of 2.51 × 1021 atoms/cm2, which is more than two orders of magnitude lower than the referenced PI (PMDA-ODA) film. Inert silica or silicate passivation layers were detected on the surface of the PI composite films exposed to AO.


2021 ◽  
Vol 255 ◽  
pp. 117738
Author(s):  
Zhaofeng Wang ◽  
Panyi Chen ◽  
Yang Liu ◽  
Hanxiang Guo ◽  
Nan Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document