Machine Learning Approaches in Parkinson’s Disease

2021 ◽  
Vol 28 ◽  
Author(s):  
Annamaria Landolfi ◽  
Carlo Ricciardi ◽  
Leandro Donisi ◽  
Giuseppe Cesarelli ◽  
Jacopo Troisi ◽  
...  

Background:: Parkinson’s disease is the second most frequent neurodegenerative disorder. Its diagnosis is challenging and mainly relies on clinical aspects. At present, no biomarker is available to obtain a diagnosis of certainty in vivo. Objective:: The present review aims at describing machine learning algorithms as they have been variably applied to different aspects of Parkinson’s disease diagnosis and characterization. Methods:: A systematic search was conducted on PubMed in December 2019, resulting in 230 publications obtained with the following search query: “Machine Learning” “AND” “Parkinson Disease”. Results:: the obtained publications were divided into 6 categories, based on different application fields: “Gait Analysis - Motor Evaluation”, “Upper Limb Motor and Tremor Evaluation”, “Handwriting and typing evaluation”, “Speech and Phonation evaluation”, “Neuroimaging and Nuclear Medicine evaluation”, “Metabolomics application”, after excluding the papers of general topic. As a result, a total of 166 articles were analyzed, after elimination of papers written in languages other than English or not directly related to the selected topics. Conclusion:: Machine learning algorithms are computer-based statistical approaches which can be trained and are able to find common patterns from big amounts of data. The machine learning approaches can help clinicians in classifying patients according to several variables at the same time.

Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2021 ◽  
Author(s):  
Saya R Dennis ◽  
Tanya Simuni ◽  
Yuan Luo

Parkinson's Disease is the second most common neurodegenerative disorder in the United States, and is characterized by a largely irreversible worsening of motor and non-motor symptoms as the disease progresses. A prominent characteristic of the disease is its high heterogeneity in manifestation as well as the progression rate. For sporadic Parkinson's Disease, which comprises ~90% of all diagnoses, the relationship between the patient genome and disease onset or progression subtype remains largely elusive. Machine learning algorithms are increasingly adopted to study the genomics of diseases due to their ability to capture patterns within the vast feature space of the human genome that might be contributing to the phenotype of interest. In our study, we develop two machine learning models that predict the onset as well as the progression subtype of Parkinson's Disease based on subjects' germline mutations. Our best models achieved an ROC of 0.77 and 0.61 for disease onset and subtype prediction, respectively. To the best of our knowledge, our models present state-of-the-art prediction performances of PD onset and subtype solely based on the subjects' germline variants. The genes with high importance in our best-performing models were enriched for several canonical pathways related to signaling, immune system, and protein modifications, all of which have been previously associated with PD symptoms or pathogenesis. These high-importance gene sets provide us with promising candidate genes for future biomedical and clinical research.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2006 ◽  
Vol 124 (3) ◽  
pp. 168-175 ◽  
Author(s):  
Ming Chi Shih ◽  
Marcelo Queiroz Hoexter ◽  
Luiz Augusto Franco de Andrade ◽  
Rodrigo Affonseca Bressan

Parkinson’s disease (PD) is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several nuclear medicine radiotracers have been developed to evaluate PD diagnoses and disease evolution in vivo in PD patients. Positron emission tomography (PET) and single photon computerized emission tomography (SPECT) radiotracers for the dopamine transporter (DAT) provide good markers for the integrity of the presynaptic dopaminergic system affected in PD. Over the last decade, radiotracers suitable for imaging the DAT have been the subject of most efforts. In this review, we provide a critical discussion on the utility of DAT imaging for Parkinson’s disease diagnosis (sensitivity and specificity).


2020 ◽  
Vol 10 (5) ◽  
pp. 1827 ◽  
Author(s):  
Rodrigo Olivares ◽  
Roberto Munoz ◽  
Ricardo Soto ◽  
Broderick Crawford ◽  
Diego Cárdenas ◽  
...  

During the last years, highly-recognized computational intelligence techniques have been proposed to treat classification problems. These automatic learning approaches lead to the most recent researches because they exhibit outstanding results. Nevertheless, to achieve this performance, artificial learning methods firstly require fine tuning of their parameters and then they need to work with the best-generated model. This process usually needs an expert user for supervising the algorithm’s performance. In this paper, we propose an optimized Extreme Learning Machine by using the Bat Algorithm, which boosts the training phase of the machine learning method to increase the accuracy, and decreasing or keeping the loss in the learning phase. To evaluate our proposal, we use the Parkinson’s Disease audio dataset taken from UCI Machine Learning Repository. Parkinson’s disease is a neurodegenerative disorder that affects over 10 million people. Although its diagnosis is through motor symptoms, it is possible to evidence the disorder through variations in the speech using machine learning techniques. Results suggest that using the bio-inspired optimization algorithm for adjusting the parameters of the Extreme Learning Machine is a real alternative for improving its performance. During the validation phase, the classification process for Parkinson’s Disease achieves a maximum accuracy of 96.74% and a minimum loss of 3.27%.


2020 ◽  
Author(s):  
Ibrahim Karabayir ◽  
Samuel Goldman ◽  
Suguna Pappu ◽  
Oguz Akbilgic

Abstract Background: Parkinson’s Disease (PD) is a clinically diagnosed neurodegenerative disorder that affects both motor and non-motor neural circuits. Speech deterioration (hypokinetic dysarthria) is a common symptom, which often presents early in the disease course. Machine learning can help movement disorders specialists improve their diagnostic accuracy using non-invasive and inexpensive voice recordings.Method: We used “Parkinson Dataset with Replicated Acoustic Features Data Set” from the UCI-Machine Learning repository. The dataset included 44 speech-test based acoustic features from patients with PD and controls. We analyzed the data using various machine learning algorithms including Light and Extreme Gradient Boosting, Random Forest, Support Vector Machines, K-nearest neighborhood, Least Absolute Shrinkage and Selection Operator Regression, as well as logistic regression. We also implemented a variable importance analysis to identify important variables classifying patients with PD. Results: The cohort included a total of 80 subjects: 40 patients with PD (55% men) and 40 controls (67.5% men). Disease duration was 5 years or less for all subjects, with a mean Unified Parkinson’s Disease Rating Scale (UPDRS) score of 19.6 (SD 8.1), and none were taking PD medication. The mean age for PD subjects and controls was 69.6 (SD 7.8) and 66.4 (SD 8.4), respectively. Our best-performing model used Light Gradient Boosting to provide an AUC of 0.951 with 95% confidence interval 0.946-0.955 in 4-fold cross validation using only seven acoustic features.Conclusions: Machine learning can accurately detect Parkinson’s disease using an inexpensive and non-invasive voice recording. Light Gradient Boosting outperformed other machine learning algorithms. Such approaches could be used to inexpensively screen large patient populations for Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document