scholarly journals Application of Monte Carlo Algorithms to Cardiac Imaging Reconstruction

2020 ◽  
Vol 26 ◽  
Author(s):  
J. Zhou ◽  
A. G. Leja ◽  
M. Salvatori ◽  
D. Della Latta ◽  
A. Di Fulvio

Abstract:: Monte Carlo algorithms have a growing impact on nuclear medicine reconstruction processes. One of the main limitations of myocardial perfusion imaging (MPI) is the effective mitigation of the scattering component, which is particularly challenging in Single Photon Emission Computed Tomography (SPECT). In SPECT, no timing information can be retrieved to locate the primary source photons. Monte Carlo methods allow an event-by-event simulation of the scattering kinematics, which can be incorporated into a model of the imaging system response. This approach was adopted since the late Nineties by several authors, and recently took advantage of the increased computational power made available by high-performance CPUs and GPUs. These recent developments enable a fast image reconstruction with an improved image quality, compared to deterministic approaches. Deterministic approaches are based on energy-windowing of the detector response, and on the cumulative estimate and subtraction of the scattering component. In this paper, we review the main strategies and algorithms to correct for the scattering effect in SPECT and focus on Monte Carlo developments, which nowadays allow the three-dimensional reconstruction of SPECT cardiac images in a few seconds.

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3013 ◽  
Author(s):  
Ariel Schwarz ◽  
Amir Shemer ◽  
Yossef Danan ◽  
Rachel Bar-Shalom ◽  
Hemy Avraham ◽  
...  

Biomedical planar imaging using gamma radiation is a very important screening tool for medical diagnostics. Since lens imaging is not available in gamma imaging, the current methods use lead collimator or pinhole techniques to perform imaging. However, due to ineffective utilization of the gamma radiation emitted from the patient’s body and the radioactive dose limit in patients, poor image signal to noise ratio (SNR) and long image capturing time are evident. Furthermore, the resolution is related to the pinhole diameter, thus there is a tradeoff between SNR and resolution. Our objectives are to reduce the radioactive dose given to the patient and to preserve or improve SNR, resolution and capturing time while incorporating three-dimensional capabilities in existing gamma imaging systems. The proposed imaging system is based on super-resolved time-multiplexing methods using both variable and moving pinhole arrays. Simulations were performed both in MATLAB and GEANT4, and gamma single photon emission computed tomography (SPECT) experiments were conducted to support theory and simulations. The proposed method is able to reduce the radioactive dose and image capturing time and to improve SNR and resolution. The results and method enhance the gamma imaging capabilities that exist in current systems, while providing three-dimensional data on the object.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Victor Ilisie ◽  
Laura Moliner ◽  
Sandra Oliver ◽  
Filomeno Sánchez ◽  
Antonio J. González ◽  
...  

AbstractGamma cameras are of great interest due to their high potential in the field of Nuclear Medicine Imaging. They allow for an early diagnosis of reduced size tumors, and also for a wide variety of preclinical studies with the aim of designing more effective treatments against cancer. In this work we propose a significantly improved multi-pinhole collimator gamma camera and perform a first Monte Carlo analysis of its characteristics. Maintaining the configuration of a multi-pinhole collimator with a high degree of overlapping (thus with a high sensitivity), we add a new element, an active septa, that besides acting as a collimator, is able to measure the impact coordinates of the incident photon. This way one is able to unambiguously identify through which pinhole any gamma ray passes before being detected. The result is a high sensitivity and resolution multi-pinhole gamma camera with an arbitrarily large field of view. As a consequence, the final reconstructed image does not suffer from the undesired artifacts or truncation associated to the multiplexing phenomenon. In this study we focus on the development of a system able to visualize in 3D tumors, nodes and metastasis in real time in the operating room with very low dose. We also briefly analyse and propose a novel design for a Single Photon Emission Computed Tomography system.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3367
Author(s):  
Victor Ilisie ◽  
Laura Moliner ◽  
Constantino Morera ◽  
Johan Nuyts ◽  
José María Benlloch

In this work, we propose and analyze a new concept of gamma ray imaging that corresponds to a gamma camera with a mobile collimator, which can be used in vivo, during surgical interventions for oncological patients for localizing regions of interest such as tumors or ganglia. The benefits are a much higher sensitivity, better image quality and, consequently, a dose reduction for the patient and medical staff. This novel approach is a practical solution to the overlapping problem which is inherent to multi-pinhole gamma camera imaging and single photon emission computed tomography and which translates into artifacts and/or image truncation in the final reconstructed image. The key concept consists in introducing a relative motion between the collimator and the detector. Moreover, this design could also be incorporated into most commercially available gamma camera devices, without any excessive additional requirements. We use Monte Carlo simulations to assess the feasibility of such a device, analyze three possible designs and compare their sensitivity, resolution and uniformity. We propose a final design of a gamma camera with a high sensitivity ranging from 0.001 to 0.006 cps/Bq, and a high resolution of 0.5–1.0 cm (FWHM), for source-to-detector distances of 4–10 cm. Additionally, this planar gamma camera provides information about the depth of source (with approximate resolution of 1.5 cm) and excellent image uniformity.


Sign in / Sign up

Export Citation Format

Share Document