The Production and Analysis of Biodegradable Polymers of Type of Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA) by Pseudomonas putida Strain for the Biomedical Engineering

Author(s):  
Nicoleta Ene ◽  
Mariana-Gratiela Vladu ◽  
Irina Lupescu ◽  
Ana-Despina Ionescu ◽  
Emanuel Vamanu

Background: Polyhydroxyalkanoates (PHAs) are bacteria-synthetized biopolymers under unbalanced growth conditions. These biopolymers are considered potential biomaterials for future applications for their biocompatibility and biodegradable features and potential biomaterials for future applications for their biocompatibility and biodegradable characteristics and their ability to be quickly produced and functionalize with strong mechanical resistance. This article is intended to perform microbial fermentation using Pseudomonas putida strain to show the amount of biopolymers of the type polyhydroxyalkanoates with medium-chain-length (mcl-PHA) obtained depending on the type and quantity of added precursors (glucose and fatty acids). Methods: It is important to understand the microbial interaction and mechanism involved in PHA biosynthetis.For these, several methods were used, such as: obtaining microbial biomass by using a Pseudomonas putida strain able of PHA-producing, analysis of biopolymer production by acetone extraction following the Soxhlet method, purification of biopolymer by methanol-ethanol treatment, followed by the estimation of biomass by spectrophotometric analysis and the measurement of the dry weight of cells and the quantification of the amount of biopolymer produced following the gas chromatographic method (GC). Results: The highest PHA yield was obtained using octanoic (17 mL in 2000 mL medium) and hexanoic acids (14 mL in 2000 mL medium) as precursors. Consequently, octanoic acid – octanoic acid, heptanoic acid – nonanoic acid, and octanoic acid - hexanoic acid were the mix of precursors that supported the amount of PHA obtained. Conclusion: Of the 4 types of structurally related substrate, the strain Pseudomonas putida ICCF 319 prefers the C8 sublayer for an elastomeric PHA's biosynthesis with a composition in which the C8 monomer predominates over C6 and C10.

2006 ◽  
Vol 73 (4) ◽  
pp. 1383-1387 ◽  
Author(s):  
Karen M. Tobin ◽  
John W. McGrath ◽  
Alan Mullan ◽  
John P. Quinn ◽  
Kevin E. O'Connor

ABSTRACT Pseudomonas putida CA-3 accumulates polyphosphate (polyP) and medium-chain-length polyhydroxyalkanoate (mclPHA) concurrently under nitrogen limitation. Five other mclPHA-accumulating Pseudomonas strains are capable of simultaneous polyP and mclPHA biosynthesis. It appears that polyP is not the rate-limiting step for mclPHA accumulation in these Pseudomonas strains.


2012 ◽  
Vol 58 (8) ◽  
pp. 982-989 ◽  
Author(s):  
Parveen K. Sharma ◽  
Jilagamazhi Fu ◽  
Nazim Cicek ◽  
Richard Sparling ◽  
David B. Levin

Six bacteria that synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were isolated from sewage sludge and hog barn wash and identified as strains of Pseudomonas and Comamonas by 16S rDNA gene sequencing. One isolate, Pseudomonas putida LS46, showed good PHA production (22% of cell dry mass) in glucose medium, and it was selected for further studies. While it is closely related to other P. putida strains (F1, KT2440, BIRD-1, GB-1, S16, and W619), P. putida LS46 was genetically distinct from these other strains on the basis of nucleotide sequence analysis of the cpn60 gene hypervariable region. PHA production was detected as early as 12 h in both nitrogen-limited and nitrogen-excess conditions. The increase in PHA production after 48 h was higher in nitrogen-limited cultures than in nitrogen-excess cultures. Pseudomonas putida LS46 produced mcl-PHAs when cultured with glucose, glycerol, or C6–C14 saturated fatty acids as carbon sources, and mcl-PHAs accounted for 56% of the cell dry mass when cells were batch cultured in medium containing 20 mmol/L octanoate. Although 3-hydroxydecanoate was the major mcl-PHA monomer (58.1–68.8 mol%) in P. putida LS46 cultured in glucose medium, 3-hydroxyoctanoate was the major monomer produced in octanoate medium (88 mol%).


2013 ◽  
Vol 1 (2) ◽  
Author(s):  
P. K. Sharma ◽  
J. Fu ◽  
X. Zhang ◽  
B. W. Fristensky ◽  
K. Davenport ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142322 ◽  
Author(s):  
Jilagamazhi Fu ◽  
Parveen Sharma ◽  
Vic Spicer ◽  
Oleg V. Krokhin ◽  
Xiangli Zhang ◽  
...  

2020 ◽  
pp. 89-114
Author(s):  
Maria Tsampika Manoli ◽  
Natalia Tarazona ◽  
Aranzazu Mato ◽  
Beatriz Maestro ◽  
Jesús M. Sanz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document