Systems Biology Experimental Design - Considerations for Building Predictive Gene Regulatory Network Models for Prokaryotic Systems

2004 ◽  
Vol 5 (7) ◽  
pp. 527-544 ◽  
Author(s):  
Marc Facciotti ◽  
Richard Bonneau ◽  
Leroy Hood ◽  
Nitin Baliga
RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 23222-23233 ◽  
Author(s):  
Wei Liu ◽  
Wen Zhu ◽  
Bo Liao ◽  
Haowen Chen ◽  
Siqi Ren ◽  
...  

Inferring gene regulatory networks from expression data is a central problem in systems biology.


2018 ◽  
Vol 457 ◽  
pp. 137-151 ◽  
Author(s):  
Takayuki Ohara ◽  
Timothy J. Hearn ◽  
Alex A.R. Webb ◽  
Akiko Satake

PLoS Genetics ◽  
2018 ◽  
Vol 14 (10) ◽  
pp. e1007402 ◽  
Author(s):  
Kleio Petratou ◽  
Tatiana Subkhankulova ◽  
James A. Lister ◽  
Andrea Rocco ◽  
Hartmut Schwetlick ◽  
...  

Author(s):  
Jose Eduardo H. da Silva ◽  
Heder S. Betnardino ◽  
Helio J.C. Barbosa ◽  
Alex B. Vieira ◽  
Luciana C.D. Campos ◽  
...  

2020 ◽  
Vol 57 ◽  
pp. 171-179
Author(s):  
Mónica L García-Gómez ◽  
Aaron Castillo-Jiménez ◽  
Juan Carlos Martínez-García ◽  
Elena R Álvarez-Buylla

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Wenqing Jean Lee ◽  
Sumantra Chatterjee ◽  
Sook Peng Yap ◽  
Siew Lan Lim ◽  
Xing Xing ◽  
...  

Embryogenesis is an intricate process involving multiple genes and pathways. Some of the key transcription factors controlling specific cell types are the Sox trio, namely, Sox5, Sox6, and Sox9, which play crucial roles in organogenesis working in a concerted manner. Much however still needs to be learned about their combinatorial roles during this process. A developmental genomics and systems biology approach offers to complement the reductionist methodology of current developmental biology and provide a more comprehensive and integrated view of the interrelationships of complex regulatory networks that occur during organogenesis. By combining cell type-specific transcriptome analysis and in vivo ChIP-Seq of the Sox trio using mouse embryos, we provide evidence for the direct control of Sox5 and Sox6 by the transcriptional trio in the murine model and by Morpholino knockdown in zebrafish and demonstrate the novel role of Tgfb2, Fbxl18, and Tle3 in formation of Sox5, Sox6, and Sox9 dependent tissues. Concurrently, a complete embryonic gene regulatory network has been generated, identifying a wide repertoire of genes involved and controlled by the Sox trio in the intricate process of normal embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document